RESUMO
BACKGROUND: Over the last two decades, tumor-derived RNA expression signatures have been developed for the two most commonly diagnosed tumors worldwide, namely prostate and breast tumors, in order to improve both outcome prediction and treatment decision-making. In this context, molecular signatures gained by main components of the tumor microenvironment, such as cancer-associated fibroblasts (CAFs), have been explored as prognostic and therapeutic tools. Nevertheless, a deeper understanding of the significance of CAFs-related gene signatures in breast and prostate cancers still remains to be disclosed. METHODS: RNA sequencing technology (RNA-seq) was employed to profile and compare the transcriptome of CAFs isolated from patients affected by breast and prostate tumors. The differentially expressed genes (DEGs) characterizing breast and prostate CAFs were intersected with data from public datasets derived from bulk RNA-seq profiles of breast and prostate tumor patients. Pathway enrichment analyses allowed us to appreciate the biological significance of the DEGs. K-means clustering was applied to construct CAFs-related gene signatures specific for breast and prostate cancer and to stratify independent cohorts of patients into high and low gene expression clusters. Kaplan-Meier survival curves and log-rank tests were employed to predict differences in the outcome parameters of the clusters of patients. Decision-tree analysis was used to validate the clustering results and boosting calculations were then employed to improve the results obtained by the decision-tree algorithm. RESULTS: Data obtained in breast CAFs allowed us to assess a signature that includes 8 genes (ITGA11, THBS1, FN1, EMP1, ITGA2, FYN, SPP1, and EMP2) belonging to pro-metastatic signaling routes, such as the focal adhesion pathway. Survival analyses indicated that the cluster of breast cancer patients showing a high expression of the aforementioned genes displays worse clinical outcomes. Next, we identified a prostate CAFs-related signature that includes 11 genes (IL13RA2, GDF7, IL33, CXCL1, TNFRSF19, CXCL6, LIFR, CXCL5, IL7, TSLP, and TNFSF15) associated with immune responses. A low expression of these genes was predictive of poor survival rates in prostate cancer patients. The results obtained were significantly validated through a two-step approach, based on unsupervised (clustering) and supervised (classification) learning techniques, showing a high prediction accuracy (≥ 90%) in independent RNA-seq cohorts. CONCLUSION: We identified a huge heterogeneity in the transcriptional profile of CAFs derived from breast and prostate tumors. Of note, the two novel CAFs-related gene signatures might be considered as reliable prognostic indicators and valuable biomarkers for a better management of breast and prostate cancer patients.
Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Masculino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Prognóstico , Transcriptoma/genética , Perfilação da Expressão Gênica , Análise por Conglomerados , Resultado do Tratamento , Pessoa de Meia-Idade , Estimativa de Kaplan-MeierRESUMO
T-cell acute lymphoblastic leukemia (T-ALL) is a hematological cancer characterized by the infiltration of immature T-cells in the bone marrow. Aberrant NOTCH signaling in T-ALL is mainly triggered by activating mutations of NOTCH1 and overexpression of NOTCH3, and rarely is it linked to NOTCH3-activating mutations. Besides the known critical role of NOTCH, the nature of intrathymic microenvironment-dependent mechanisms able to render immature thymocytes, presumably pre-leukemic cells, capable of escaping thymus retention and infiltrating the bone marrow is still unclear. An important challenge is understanding how leukemic cells shape their tumor microenvironment to increase their ability to infiltrate and survive within. Our previous data indicated that hyperactive NOTCH3 affects the CXCL12/CXCR4 system and may interfere with T-cell/stroma interactions within the thymus. This study aims to identify the biological effects of the reciprocal interactions between human leukemic cell lines and thymic epithelial cell (TEC)-derived soluble factors in modulating NOTCH signaling and survival programs of T-ALL cells and TECs. The overarching hypothesis is that this crosstalk can influence the progressive stages of T-cell development driving T-cell leukemia. Thus, we investigated the effect of extracellular space conditioned by T-ALL cell lines (Jurkat, TALL1, and Loucy) and TECs and studied their reciprocal regulation of cell cycle and survival. In support, we also detected metabolic changes as potential drivers of leukemic cell survival. Our studies could shed light on T-cell/stroma crosstalk to human leukemic cells and propose our culture system to test pharmacological treatment for T-ALL.
Assuntos
Leucemia de Células T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Timo/metabolismo , Transdução de Sinais , Células Epiteliais/metabolismo , Leucemia de Células T/metabolismo , Apoptose , Proliferação de Células , Microambiente TumoralRESUMO
BACKGROUND: Nonthyroidal Illness Syndrome (NTIS) can be detected in many critical illnesses. Recently, we demonstrated that this condition is frequently observed in COVID-19 patients too and it is correlated with the severity the disease. However, the exact mechanism through which thyroid hormones influence the course of COVID-19, as well as that of many other critical illnesses, is not clear yet and treatment with T4, T3 or a combination of both is still controversial. Aim of this study was to analyze body composition in COVID-19 patients in search of possible correlation with the thyroid function. METHODS AND FINDINGS: We report here our experience performed in 74 critically ill COVID-19 patients hospitalized in the intensive care unit (ICU) of our University Hospital in Rome. In these patients, we evaluated the thyroid hormone function and body composition by Bioelectrical Impedance Analysis (BIA) during the acute phase of the disease at admission in the ICU. To examine the effects of thyroid function on BIA parameters we analyzed also 96 outpatients, affected by thyroid diseases in different functional conditions. We demonstrated that COVID-19 patients with low FT3 serum values exhibited increased values of the Total Body Water/Free Fat Mass (TBW/FFM) ratio. Patients with the lowest FT3 serum values had also the highest level of TBW/FFM ratio. This ratio is an indicator of the fraction of FFM as water and represents one of the best-known body-composition constants in mammals. We found an inverse correlation between FT3 serum values and this constant. Reduced FT3 serum values in COVID-19 patients were correlated with the increase in the total body water (TBW), the extracellular water (ECW) and the sodium/potassium exchangeable ratio (Nae:Ke), and with the reduction of the intracellular water (ICW). No specific correlation was observed in thyroid patients at different functional conditions between any BIA parameters and FT3 serum values, except for the patient with myxedema, that showed a picture similar to that seen in COVID-19 patients with NTIS. Since the Na+/K+ pump is a well-known T3 target, we measured the mRNA expression levels of the two genes coding for the two major isoforms of this pump. We demonstrated that COVID-19 patients with NTIS had lower levels of mRNA of both genes in the peripheral blood mononuclear cells (PBMC)s obtained from our patients during the acute phase of the disease. In addition, we retrieved data from transcriptome analysis, performed on human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM)s treated with T3 and we demonstrated that in these cells T3 is able to stimulate the expression of these two genes in a dose-dependent manner. CONCLUSIONS: In conclusion, we demonstrated that measurement of BIA parameters is a useful method to analyze water and salt retention in COVID-19 patients hospitalized in ICU and, in particular, in those that develop NTIS. Our results indicate that NTIS has peculiar similarities with myxedema seen in severe hypothyroid patients, albeit it occurs more rapidly. The Na+/K+ pump is a possible target of T3 action, involved in the pathogenesis of the anasarcatic condition observed in our COVID-19 patients with NTIS. Finally, measurement of BIA parameters may represent good endpoints to evaluate the benefit of future clinical interventional trials, based on the administration of T3 in patients with NTIS.
Assuntos
COVID-19 , Leucócitos Mononucleares , Animais , Expressão Gênica , Humanos , SARS-CoV-2 , Sódio , Tri-IodotironinaRESUMO
Tumour promoting inflammation is widely recognized as a hallmark of cancer. The source of this chronic inflammation in cancer has been ascribed to the progressive activation over time of immune cells, mostly of the innate arm of the immune system. However, recent evidence has shown that chronic inflammation may also derive, at least in part, from senescent cells. Hence, due to the prominent role of inflammation in cancer, the cancer secretome definition includes all the secretory factors ensuing from the crosstalk between the cancer cell and the tumour microenvironment. The mechanistic basis underlying the paracrine signalling between the cancer cell and the surrounding tumour microenvironment in malignancy have been widely investigated by using in vivo models of cancers, thus identifying the NF-κB transcription factor as the molecular hub linking inflammation and cancer. In this review, we highlight the roles of NF-κB in regulating the inflammation-derived secretome emanating from immune and senescent cells, with a special focus on the bright and the dark sides of their pro-inflammatory signalling on tumorigenesis.
Assuntos
Transformação Celular Neoplásica/patologia , Inflamação/imunologia , Inflamação/patologia , Neoplasias/patologia , Proteoma/metabolismo , Fator de Transcrição RelA/metabolismo , Humanos , Proteínas I-kappa B/metabolismo , Imunidade Inata/imunologia , Microambiente Tumoral/imunologiaRESUMO
BACKGROUND: Colorectal cancer (CRC) is a heterogeneous disease with a complex biology and a wide number of altered genes such as BRAF, KRAS and PIK3CA. Advances with new-targeted therapies have been achieved and available treating options have prolonged patient's survival. However, BRAF-mutated CRC patients remain unresponsive to available therapies with RAF inhibitors (RAFi) alone or combined with ErbB inhibitors (ErbBi). These unmet needs require further exploitation of oncogenic signaling in order to set up individualized treatments. METHODS: To this end, we tested the efficacy of single agent or combined treatments using the BRAFi, vemurafenib and two different ErbBi: panitumumab and afatinib in CRC cells characterized by different molecular phenotypes. RESULTS: Combination strategies with BRAFi and ErbBi achieved a better response in BRAFV600E mutated cells expressing high levels of ErbB2. CONCLUSIONS: Our findings support the importance of ErbB2 evaluation in BRAF-mutated CRC patients and its role as a positive predictor factor of response to BRAFi/ErbBi combination.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Mutação , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Receptor ErbB-2/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Afatinib/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Terapia de Alvo Molecular/métodos , Panitumumabe/administração & dosagem , Receptor ErbB-2/metabolismo , Vemurafenib/administração & dosagemRESUMO
BACKGROUND: /Objectives: Pancreatic ductal adenocarcinoma (PDAC) has a higher incidence in men compared to women, although the difference in known risk factors cannot explain this disparity completely. Reproductive and hormonal factors have been demonstrated in pre-clinical studies to influence pancreatic carcinogenesis, but the few published data on the topic are inconsistent. The aim was to investigate the role of reproductive and hormonal factors on PDAC occurrence in women. METHODS: We conducted a unicenter case-control study; PDAC cases were matched to controls by age with a 1:2 ratio. Risk factors were screened through questionnaires about gynecologic and medical history. Comparisons were made using Chi-square and Fisher's exact tests where appropriate for categorical variables and Student's t-test for continuous variables. Logistic regression was used to calculate Odds Ratios (ORs) and their 95% confidence intervals (CI). Multivariable logistic regression models were adjusted for potential confounders. RESULTS: 253 PDAC and 506 matched controls were enrolled. At logistic regression multivariable analysis adjusted for confounding factors, older age at menopause (OR:0.95 per year; 95% CI:0.91-0.98; p = 0.007), use of Oral Contraceptives (OR:0.52; 95% CI:0.30-0.89; p = 0.018), use of Hormonal Replacement Therapy (OR:0.31; 95% CI:0.15-0.64; p = 0.001), and having had two children (OR:0.57; 95% CI:0.38-0.84; p = 0.005) were significant, independent protective factors for the onset of PDAC. CONCLUSIONS: These data confirm some previous findings on menopause age and number of births while, to our knowledge, this is the first study to show a protective effect of HRT and OC use. The results collectively support the hypothesis that exposure to estrogens plays a protective role towards PDAC.
Assuntos
Carcinoma Ductal Pancreático/epidemiologia , Ginecologia , Nível de Saúde , Neoplasias Pancreáticas/epidemiologia , Reprodução , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Anticoncepcionais Femininos/efeitos adversos , Terapia de Reposição de Estrogênios/efeitos adversos , Feminino , Hormônios Esteroides Gonadais/sangue , Terapia de Reposição Hormonal , Humanos , Menopausa , Pessoa de Meia-Idade , Paridade , Fatores de RiscoRESUMO
Breast cancer (BC) in men is rare and genetic predisposition is likely to play a relevant role in its etiology. Inherited mutations in BRCA1/2 account for about 13% of all cases and additional genes that may contribute to the missing heritability need to be investigated. In our study, a well-characterized series of 523 male BC (MBC) patients from the Italian multicenter study on MBC, enriched for non-BRCA1/2 MBC cases, was screened by a multigene custom panel of 50 cancer-associated genes. The main clinical-pathologic characteristics of MBC in pathogenic variant carriers and non-carriers were also compared. BRCA1/2 pathogenic variants were detected in twenty patients, thus, a total of 503 non-BRCA1/2 MBC patients were examined in our study. Twenty-seven of the non-BRCA1/2 MBC patients were carriers of germline pathogenic variants in other genes, including two APC p.Ile1307Lys variant carriers and one MUTYH biallelic variant carrier. PALB2 was the most frequently altered gene (1.2%) and PALB2 pathogenic variants were significantly associated with high risk of MBC. Non-BRCA1/2 pathogenic variant carriers were more likely to have personal (p = 0.0005) and family (p = 0.007) history of cancer. Results of our study support a central role of PALB2 in MBC susceptibility and show a low impact of CHEK2 on MBC predisposition in the Italian population. Overall, our data indicate that a multigene testing approach may benefit from appropriately selected patients with implications for clinical management and counseling of MBC patients and their family members.
Assuntos
Neoplasias da Mama Masculina/genética , Quinase do Ponto de Checagem 2/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Mutação , Análise de Sequência de DNA/métodos , Proteína da Polipose Adenomatosa do Colo/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , DNA Glicosilases/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Checkpoint inhibitor-based immunotherapy is opening a promising scenario in oncology, with objective responses registered in multiple cancer types. However, reliable predictive markers of tumor responsiveness are still lacking. These markers need to be urgently identified for a better selection of patients that can be candidates for immunotherapy. In this pilot study, a cohort of 34 consecutive patients bearing programmed death-ligand 1 (PD-L1)-positive non-small cell lung carcinoma (NSCLC), treated with pembrolizumab, was considered. The retrospective immuno-phenotypic analysis performed on the original tumor biopsies allowed for the identification of a specific "galectin signature", which strongly correlated with tumor responsiveness to anti PD-1 immunotherapy. We observed that the large majority of patients (about 90%) with high galectin-3 tumor expression (score 3+) showed an early and dramatic progression of the disease after three cycles of treatments. In contrast, all patients with negative or low/intermediate expression of galectin-3 in tumor cells showed an early and durable objective response to pembrolizumab, indicating galectin-3 as an interesting predictive marker of tumor responsiveness. The galectin-3 signature, at least in NSCLCs, promises a better selection of patient candidates for immunotherapy, reducing unnecessary treatment exposures and social costs. A large multicenter study is ongoing to validate this finding.
Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Galectina 3/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Idoso , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Proteínas Sanguíneas , Galectinas , Humanos , Imuno-Histoquímica , Imunoterapia , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/metabolismo , Estudos RetrospectivosRESUMO
The transcription factor Nanog plays a critical role in the self-renewal of embryonic stem cells as well as in neural stem cells (NSCs). microRNAs (miRNAs) are also involved in stemness regulation. However, the miRNA network downstream of Nanog is still poorly understood. High-throughput screening of miRNA expression profiles in response to modulated levels of Nanog in postnatal NSCs identifies miR-17-92 cluster as a direct target of Nanog. Nanog controls miR-17-92 cluster by binding to the upstream regulatory region and maintaining high levels of transcription in NSCs, whereas Nanog/promoter association and cluster miRNAs expression are lost alongside differentiation. The two miR-17 family members of miR-17-92 cluster, namely miR-17 and miR-20a, target Trp53inp1, a downstream component of p53 pathway. To support a functional role, the presence of miR-17/20a or the loss of Trp53inp1 is required for the Nanog-induced enhancement of self-renewal of NSCs. We unveil an arm of the Nanog/p53 pathway, which regulates stemness in postnatal NSCs, wherein Nanog counteracts p53 signals through miR-17/20a-mediated repression of Trp53inp1.
Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/genética , Ciclo Celular , Proliferação de Células , Células Cultivadas , Cerebelo/citologia , Proteínas de Choque Térmico/genética , Proteínas de Homeodomínio/genética , Camundongos , MicroRNAs/genética , Proteína Homeobox Nanog , Células-Tronco Neurais/citologiaRESUMO
Since the establishment of the Sanger sequencing method, scientists around the world focused their efforts to progress in the field to produce the utmost technology. The introduction of next-generation sequencing (NGS) represents a revolutionary step and promises to lead to massive improvements in our understanding on the role of nucleic acids functions. Cancer research began to use this innovative and highly performing method, and interesting results started to appear in colorectal cancer (CRC) analysis. Several studies produced high-quality data in terms of mutation discovery, especially about actionable or less frequently mutated genes, epigenetics, transcriptomics. Analysis of results is unveiling relevant perspectives aiding to evaluate the response to therapies. Novel evidences have been presented also in other directions such as gut microbiota or CRC circulating tumor cells. However, despite its unquestioned potential, NGS poses some issues calling for additional studies. This review intends to offer a view of the state of the art of NGS applications to CRC through examination of the most important technologies and discussion of recent published results.
Assuntos
Neoplasias Colorretais/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Epigênese Genética , Perfilação da Expressão Gênica , Humanos , Mutação/genéticaRESUMO
Hereditary breast and ovarian cancer are mainly linked to mutations in BRCA1 and BRCA2 genes which confer a similar cumulative risk of developing breast cancer. Importantly, while BRCA2 mutation carriers generally have a lower cumulative risk for ovarian cancer, mutations clustered in the central portion of BRCA2 are associated with a higher proportion of ovarian compared with breast cancer cases. The boundaries of this ovarian cancer cluster region (OCCR) have been tentatively defined within a 3.3 kb region of BRCA2 exon 11, and herein, we reassessed these boundaries using our series of Italian breast/ovarian cancer families. We used direct sequencing to investigate BRCA mutations in 367 breast/ovarian cancer families. We also studied the association between the location of the mutations and the ovarian cancer phenotype in our cohort of BRCA2-mutated families. We observed the novel c.7309_7309delA frameshift mutation and the c.7007G>A deleterious mutation in BRCA2 exons 14 and 13, respectively, in five independent Italian families characterized by a high proportion of ovarian cancer cases. Of note, a significantly higher proportion of ovarian versus breast cancer cases was associated not only with mutations in the previously defined OCCR (OR = 5.91; p = 0.004), but also with the exon 13-14 region (OR = 7.37; p = 0.001) in our BRCA2-mutated families. Our data provide initial evidence for a novel putative OCCR in BRCA2 exons 13-14.
Assuntos
Proteína BRCA2/genética , Neoplasias da Mama Masculina/genética , Neoplasias Ovarianas/genética , Adulto , Idoso , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama Masculina/epidemiologia , Éxons , Feminino , Mutação em Linhagem Germinativa , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/patologia , LinhagemRESUMO
Among neoplastic diseases, breast cancer (BC) is one of the most influenced by gender. Despite common misconceptions associating BC as a women-only disease, BC can also occur in men. Additionally, transgender individuals may also experience BC. Genetic risk factors play a relevant role in BC predisposition, with important implications in precision prevention and treatment. The genetic architecture of BC susceptibility is similar in women and men, with high-, moderate-, and low-penetrance risk variants; however, some sex-specific features have emerged. Inherited high-penetrance pathogenic variants (PVs) in BRCA1 and BRCA2 genes are the strongest BC genetic risk factor. BRCA1 and BRCA2 PVs are more commonly associated with increased risk of female and male BC, respectively. Notably, BRCA-associated BCs are characterized by sex-specific pathologic features. Recently, next-generation sequencing technologies have helped to provide more insights on the role of moderate-penetrance BC risk variants, particularly in PALB2, CHEK2, and ATM genes, while international collaborative genome-wide association studies have contributed evidence on common low-penetrance BC risk variants, on their combined effect in polygenic models, and on their role as risk modulators in BRCA1/2 PV carriers. Overall, all these studies suggested that the genetic basis of male BC, although similar, may differ from female BC. Evaluating the genetic component of male BC as a distinct entity from female BC is the first step to improve both personalized risk assessment and therapeutic choices of patients of both sexes in order to reach gender equality in BC care. In this review, we summarize the latest research in the field of BC genetic predisposition with a particular focus on similarities and differences in male and female BC, and we also discuss the implications, challenges, and open issues that surround the establishment of a gender-oriented clinical management for BC.
RESUMO
In the field of breast cancer care, a significant breakthrough has occurred with the recognition of HER2-low expression as a target for novel anti-HER2 antibody-drug conjugates (ADC). This discovery is reshaping the treatment landscape, challenging previous perceptions that considered HER2-low as clinically insignificant. The ability to target HER2-low expression is expected to have substantial clinical implications, irrespective of gender, including in cases of male breast cancer (MBC). However, an estimate of the prevalence of the HER2-low subtype in MBC is missing. This retrospective, observational, multicenter study was aimed at characterizing the HER2-low subtype in MBC. For the purpose of this study, the three-tiered categorization of HER2 (HER2-0, HER2-low, and HER2-positive) was used to reclassify the HER2-negative group into HER-0 or HER2-low subtypes. In the whole series of 144 invasive MBCs, 79 (54.9%) were HER2-0 (IHC scores of 0), 39 (27.1%) HER2-low (IHC scores of 1+/2+ with negative ISH), and 26 (18.0%) HER2-positive (IHC scores of 3+/2+ with positive ISH). Specifically, among hormone receptor-positive (HR+) HER2-negative invasive MBCs, 34.8% were HER2-low and 65.2% HER2-0. Compared with HER2-0, HER2-low subtype was associated with a positive lymph node involvement (p = 0.01). Other pathologic characteristics including histology, staging, and grading did not show notable variations between the two subtypes. The presence of germline BRCA1/2 pathogenic variants (PVs) did not significantly differ between HER2-0 and HER2-low MBCs. However, about 13% of HER2-low MBCs had germline PVs in BRCA1/2 genes, mainly BRCA2, a clinically relevant observation in the context of combined target therapy. Overall, our data, which focused on the largest gender-specific breast cancer series, to our knowledge, confirm that the emerging three-tiered categorization of HER2 (HER2-0, HER2-low, and HER2-positive) can also be considered in MBC, to mitigate both the gender gap and the underrepresentation of males in clinical trials.
RESUMO
BACKGROUND: The cyclin D1-cyclin dependent kinases (CDK)4/6 inhibitor palbociclib in combination with endocrine therapy shows remarkable efficacy in the management of estrogen receptor (ER)-positive and HER2-negative advanced breast cancer (BC). Nevertheless, resistance to palbociclib frequently arises, highlighting the need to identify new targets toward more comprehensive therapeutic strategies in BC patients. METHODS: BC cell lines resistant to palbociclib were generated and used as a model system. Gene silencing techniques and overexpression experiments, real-time PCR, immunoblotting and chromatin immunoprecipitation studies as well as cell viability, colony and 3D spheroid formation assays served to evaluate the involvement of the G protein-coupled estrogen receptor (GPER) in the resistance to palbociclib in BC cells. Molecular docking simulations were also performed to investigate the potential interaction of palbociclib with GPER. Furthermore, BC cells co-cultured with cancer-associated fibroblasts (CAFs) isolated from mammary carcinoma, were used to investigate whether GPER signaling may contribute to functional cell interactions within the tumor microenvironment toward palbociclib resistance. Finally, by bioinformatics analyses and k-means clustering on clinical and expression data of large cohorts of BC patients, the clinical significance of novel mediators of palbociclib resistance was explored. RESULTS: Dissecting the molecular events that characterize ER-positive BC cells resistant to palbociclib, the down-regulation of ERα along with the up-regulation of GPER were found. To evaluate the molecular events involved in the up-regulation of GPER, we determined that the epidermal growth factor receptor (EGFR) interacts with the promoter region of GPER and stimulates its expression toward BC cells resistance to palbociclib treatment. Adding further cues to these data, we ascertained that palbociclib does induce pro-inflammatory transcriptional events via GPER signaling in CAFs. Of note, by performing co-culture assays we demonstrated that GPER contributes to the reduced sensitivity to palbociclib also facilitating the functional interaction between BC cells and main components of the tumor microenvironment named CAFs. CONCLUSIONS: Overall, our results provide novel insights on the molecular events through which GPER may contribute to palbociclib resistance in BC cells. Additional investigations are warranted in order to assess whether targeting the GPER-mediated interactions between BC cells and CAFs may be useful in more comprehensive therapeutic approaches of BC resistant to palbociclib.
Assuntos
Neoplasias da Mama , Quinase 4 Dependente de Ciclina , Resistencia a Medicamentos Antineoplásicos , Piperazinas , Piridinas , Receptores de Estrogênio , Humanos , Piridinas/farmacologia , Piridinas/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Feminino , Receptores de Estrogênio/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Linhagem Celular Tumoral , Receptores Acoplados a Proteínas G/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Microambiente TumoralRESUMO
BACKGROUND: Germline pathogenic variants (PVs) in BRCA1/2 genes are associated with breast cancer (BC) risk in both women and men. Multigene panel testing is being increasingly used for BC risk assessment, allowing the identification of PVs in genes other than BRCA1/2. While data on actionable PVs in other cancer susceptibility genes are now available in female BC, reliable data are still lacking in male BC (MBC). This study aimed to provide the patterns, prevalence and risk estimates associated with PVs in non-BRCA1/2 genes for MBC in order to improve BC prevention for male patients. METHODS: We performed a large case-control study in the Italian population, including 767 BRCA1/2-negative MBCs and 1349 male controls, all screened using a custom 50 cancer gene panel. RESULTS: PVs in genes other than BRCA1/2 were significantly more frequent in MBCs compared with controls (4.8% vs 1.8%, respectively) and associated with a threefold increased MBC risk (OR: 3.48, 95% CI: 1.88-6.44; p < 0.0001). PV carriers were more likely to have personal (p = 0.03) and family (p = 0.02) history of cancers, not limited to BC. PALB2 PVs were associated with a sevenfold increased MBC risk (OR: 7.28, 95% CI: 1.17-45.52; p = 0.034), and ATM PVs with a fivefold increased MBC risk (OR: 4.79, 95% CI: 1.12-20.56; p = 0.035). CONCLUSIONS: This study highlights the role of PALB2 and ATM PVs in MBC susceptibility and provides risk estimates at population level. These data may help in the implementation of multigene panel testing in MBC patients and inform gender-specific BC risk management and decision making for patients and their families.
Assuntos
Neoplasias da Mama Masculina , Neoplasias da Mama , Humanos , Feminino , Masculino , Neoplasias da Mama Masculina/genética , Predisposição Genética para Doença , Estudos de Casos e Controles , Neoplasias da Mama/genética , Neoplasias da Mama/epidemiologia , Genes BRCA1 , Medição de RiscoRESUMO
BACKGROUND: Electrochemotherapy (ECT) is a minimally invasive and safe treatment gaining positive and long-lasting antitumoral results that are receiving the attention of the scientific community. It is a local treatment that combines the use of electroporation and the administration of cytotoxic drugs to induce cell death in the target tissue. ECT is largely used for the treatment of cutaneous and subcutaneous lesions, and good results have been reported for the treatment of deep visceral tumors. The latest literature review is provided. Moreover, in line with its development for the treatment of visceral tumors in this article, we describe a novel approach of ECT: endoscopic treatment of colorectal cancer. Endoscopic ECT application was combined with systemic chemotherapy in the treatment of obstructing rectal cancer without prospective surgery. A good response after ECT was described: concentric involvement of the rectum was reduced, and no stenosing lesions were detected. CONCLUSIONS: Clinical studies have demonstrated that ECT is a very effective treatment for tumors of different histologic types and localizations. Endoscopic treatment for gastrointestinal cancer is an innovative application of ECT. The combination of systemic treatment and ECT was safe and highly effective in the treatment of colorectal cancer, especially when obstructive, giving the patient a significant gain in quality of life.
Assuntos
Antineoplásicos , Neoplasias Colorretais , Eletroquimioterapia , Antineoplásicos/uso terapêutico , Bleomicina , Neoplasias Colorretais/tratamento farmacológico , Eletroquimioterapia/métodos , Humanos , Qualidade de VidaRESUMO
Background and Objective: Nonthyroidal Illness Syndrome (NTIS) occurs in approximately 70% of patients admitted to Intensive Care Units (ICU)s and has been associated with increased risk of death. Whether patients with NTIS should receive treatment with thyroid hormones (TH)s is still debated. Since many interventional randomized clinical trials (IRCT)s were not conclusive, current guidelines do not recommend treatment for these patients. In this review, we analyze the reasons why TH treatment did not furnish convincing results regarding possible beneficial effects in reported IRCTs. Methods: We performed a review of the metanalyses focused on NTIS in critically ill patients. After a careful selection, we extracted data from four metanalyses, performed in different clinical conditions and diseases. In particular, we analyzed the type of TH supplementation, the route of administration, the dosages and duration of treatment and the outcomes chosen to evaluate the results. Results: We observed a marked heterogeneity among the IRCTs, in terms of type of TH supplementation, route of administration, dosages and duration of treatment. We also found great variability in the primary outcomes, such as prevention of neurological alterations, reduction of oxygen requirements, restoration of endocrinological and clinical parameters and reduction of mortality. Conclusions: NTIS is a frequent finding in critical ill patients. Despite several available IRCTs, it is still unclear whether NTIS should be treated or not. New primary endpoints should be identified to adequately validate the efficacy of TH treatment and to obtain a clear answer to the question raised some years ago.
Assuntos
Síndromes do Eutireóideo Doente , Estado Terminal/terapia , Hospitalização , Humanos , Unidades de Terapia Intensiva , Hormônios Tireóideos/uso terapêuticoRESUMO
Colorectal cancer (CRC) is characterized by early metastasis, resistance to anti-cancer therapy, and high mortality rate. Despite considerable progress in the development of new treatment options that improved survival benefits in patients with early-stage or advanced CRC, many patients relapse due to the activation of intrinsic or acquired chemoresistance mechanisms. Recently, we reported novel findings about the role of Jagged1 in CRC tumors with Kras signatures. We showed that Jagged1 is a novel proteolytic target of Kras signaling, which induces Jagged1 processing/activation resulting in Jag1-ICD release, which favors tumor development in vivo, through a non-canonical mechanism. Herein, we demonstrate that OXP and 5FU cause a strong accumulation of Jag1-ICD oncogene, through ERK1/2 activation, unveiling a surviving subpopulation with an enforced Jag1-ICD expression, presenting the ability to counteract OXP/5FU-induced apoptosis. Remarkably, we also clarify the clinical ineffectiveness of γ-secretase inhibitors (GSIs) in metastatic CRC (mCRC) patients. Indeed, we show that GSI compounds trigger Jag1-ICD release, which promotes cellular growth and EMT processes, functioning as tumor-promoting agents in CRC cells overexpressing Jagged1. We finally demonstrate that Jagged1 silencing in OXP- or 5FU-resistant subpopulations is enough to restore the sensitivity to chemotherapy, confirming that drug sensitivity/resistance is Jag1-ICD-dependent, suggesting Jagged1 as a molecular predictive marker for the outcome of chemotherapy.
RESUMO
BACKGROUND: Thyroid hormones (TH)s are master regulators of mitochondrial activity and biogenesis. Nonthyroidal illness syndrome (NTIS) is generally considered an adaptative response to reduced energy that is secondary to critical illness, including COVID-19. COVID-19 has been associated with profound changes in the cell energy metabolism, especially in the cells of the immune system, with a central role played by the mitochondria, considered the power units of every cell. Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affects and alters mitochondrial functions, both to influence its intracellular survival and to evade host immunity. AIM OF THE STUDY: This study was undertaken to analyze the oxidative balance and mitochondrial respiration in COVID-19 patients with and without NTIS to elucidate the role that thyroid hormones (TH)s play in this context. METHODS: In our cohort of 54 COVID-19 patients, admitted to our University Hospital during the COVID-19 pandemic, we evaluated the generation of reactive oxygen species (ROS) by measuring the serum levels of derivatives of reactive oxygen metabolites (dROMs), and we analyzed the antioxidant capacity by measuring the serum biological antioxidant potential (BAP). We then analyzed the mitochondrial respiration in peripheral blood mononuclear cells (PBMC)s of 28 of our COVID-19 patients, using the seahorse instrument (Agilent). Results were correlated with the serum levels of THs and, in particular, of FT3. In addition, the role of T3 on bioelectrical impedance analysis (BIA) and mitochondrial respiration parameters was directly evaluated in two COVID-19 patients with NTIS, in which treatment with synthetic liothyronine (LT3) was given both in vivo and in vitro. RESULTS: In our COVID-19 patients with NTIS, the dROMs values were significantly lower and the BAP values were significantly higher. Consequently, the oxidative stress index (OSi), measured as BAP/dROMs ratio was reduced compared to that observed in COVID-19 patients without NTIS, indicating a protective role exerted by NTIS on oxidative stress. In our COVID-19 patients, the mitochondrial respiration, measured in PBMCs, was reduced compared to healthy controls. Those with NTIS showed a reduced maximal respiratory capacity and a reduced proton leak, compared to those with normal FT3 serum values. Such lowered mitochondrial respiratory capacity makes the cells more vulnerable to bioenergetic exhaustion. In a pilot study involving two COVID-19 patients with NTIS, we could reinforce our previous observation regarding the role of T3 in the maintenance of adequate peripheral hydroelectrolytic balance. In addition, in these two patients, we demonstrated that by treating their PBMCs with LT3, both in vitro and in vivo, all mitochondrial respiration parameters significantly increased. CONCLUSIONS: Our results regarding the reduction in the serum levels of the reactive oxygen species (ROS) of COVID-19 patients with NTIS support the hypothesis that NTIS could represent an adaptative response to severe COVID-19. However, beside this beneficial effect, we demonstrate that, in the presence of an acute reduction of FT3 serum levels, the mitochondrial respiration is greatly impaired, with a consequent establishment of a hypoenergetic state of the immune cells that may hamper their capacity to react to massive viral infection.