RESUMO
A new high-temperature detector dedicated to the collection of backscattered electrons is used in combination with heating stages up to 1050°C, in high-vacuum and low-vacuum modes in order to evaluate its possibilities through signal-to-noise ration measurements and different applications. Four examples of material transformations occurring at high temperature are herein reported: grain growth during annealing of a rolled platinum foil, recrystallisation of a multiphased alloy, oxidation of a Ni-based alloy and complex phase transformations occurring during the annealing of an Al-Si coated boron steel. The detector could be potentially adapted to any type of SEM and it offers good opportunities to perform high-temperature experiments in various atmospheres.
RESUMO
The sorption mechanism of Ru3+ ions on hydroxy (HAp), carbonate (CO3HAp), and fluor apatites (FAp) has been studied in detail. Ru apatites were obtained by reaction of the apatites with RuCl3 in aqueous solution. The structure and composition of the ruthenium-modified apatites were studied by several techniques: elemental analysis, XRD, EXAFS, IR, NMR, SEM-EDS, TEM, and thermal analysis. The amount of Ru in the modified apatite varies from 7.8 to 10.5 wt% and is not related to the initial composition or the specific surface area of the apatite. The different characterization techniques show that in the Ru-modified apatites Ru is surrounded by six oxygen atoms and do not contain any chlorine. For Ru-HAp and Ru-CO3HAp the new phase is amorphous whereas it is crystalline for FAp. The catalytic oxidation ability is higher for Ru-HAp and Ru-CO3HAp compared to Ru-FAp apatite in the oxidation of benzylic alcohol.