Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(21): 15181-15191, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38752328

RESUMO

In this paper, we propose a new two-step strategy for computing ro-vibrational energy levels and wavefunctions of a triatomic molecule and apply it to CO2. A two-step method [J. Tennyson and B. T. Sutcliffe, Mol. Phys., 1986, 58, 1067] uses a basis whose functions are products of K-dependent "vibrational" functions and symmetric top functions. K is the quantum number for the molecule-fixed z component of the angular momentum. For a linear molecule, a two-step method is efficient because the Hamiltonian used to compute the basis functions includes the largest coupling term. The most important distinguishing feature of the two-step method we propose is that it uses an associated Legendre basis and quadrature rather than a K-dependent discrete variable representation. This reduces the cost of the calculation and simplifies the method. We have computed ro-vibrational energy levels with J up to 100 for CO2, on an accurate available potential energy surface which is known as the AMES-2 PES and present a subset of those levels. We have converged most levels up to 20 000 cm-1 to 0.0001 cm-1.

2.
J Chem Phys ; 160(21)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38836450

RESUMO

We propose a new collocation multi-configuration time-dependent Hartree (MCTDH) method. It reduces point-set error by using more points than basis functions. Collocation makes it possible to use MCTDH with a general potential energy surface without computing any integrals. The collocation points are associated with a basis larger than the basis used to represent wavefunctions. Both bases are obtained from a direct product basis built from single-particle functions by imposing a pruning condition. The collocation points are those on a sparse grid. Heretofore, collocation MCTDH calculations with more points than basis functions have only been possible if both the collocation grid and the basis set are direct products. In this paper, we exploit a new pseudo-inverse to use both more points than basis functions and a pruned basis and grid. We demonstrate that, for a calculation of the lowest 50 vibrational states (energy levels and wavefunctions) of CH2NH, errors can be reduced by two orders of magnitude by increasing the number of points, without increasing the basis size. This is true also when unrefined time-independent points are used.

3.
J Chem Phys ; 161(4)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39037133

RESUMO

In this paper, we use nested tensor-train contractions to compute vibrational and ro-vibrational energy levels of molecules with five and six atoms. At each step, we fully exploit symmetry by using symmetry adapted basis functions obtained from an irreducible tensor method. Contracted basis functions are determined by diagonalizing reduced dimensional Hamiltonian matrices. The size of matrices of eigenvectors, used to account for coupling between groups of coordinates, is reduced by discarding rows and columns. The size of the matrices that must be diagonalized is thus substantially reduced, making it possible to use direct eigensolvers, even for molecules with five and six atoms. The symmetry-adapted contracted vibrational basis functions have been used to compute J = 0 energy levels of the CH3CN (C3v) and J > 0 levels of CH4.

4.
Sci Adv ; 10(8): eadj8632, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394212

RESUMO

Measurements of rovibrational spectra of clusters provide physical insight only if spectral lines can be assigned to pairs of quantum states, and further insight is obtained if one can deduce the quantitative energy-level pattern. Both steps can be so difficult that some measured spectra remain unassigned, one example is orthoH2-CO. To extend the scope of spectroscopic insights, we propose to use theoretical information in interpretation of spectra. We first performed high accuracy, full-dimensional calculations of the orthoH2-CO spectrum, at the highest practically achievable levels of electronic structure theory and quantum nuclear dynamics. Then, an iterative, theory-guided method developed here allowed us to fully interpret the spectrum of orthoH2-CO, extending the range of van der Waals clusters for which spectroscopy can provide physical insights.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA