Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(10): e2214035120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848574

RESUMO

Assessing environmental changes in Southern Ocean ecosystems is difficult due to its remoteness and data sparsity. Monitoring marine predators that respond rapidly to environmental variation may enable us to track anthropogenic effects on ecosystems. Yet, many long-term datasets of marine predators are incomplete because they are spatially constrained and/or track ecosystems already modified by industrial fishing and whaling in the latter half of the 20th century. Here, we assess the contemporary offshore distribution of a wide-ranging marine predator, the southern right whale (SRW, Eubalaena australis), that forages on copepods and krill from ~30°S to the Antarctic ice edge (>60°S). We analyzed carbon and nitrogen isotope values of 1,002 skin samples from six genetically distinct SRW populations using a customized assignment approach that accounts for temporal and spatial variation in the Southern Ocean phytoplankton isoscape. Over the past three decades, SRWs increased their use of mid-latitude foraging grounds in the south Atlantic and southwest (SW) Indian oceans in the late austral summer and autumn and slightly increased their use of high-latitude (>60°S) foraging grounds in the SW Pacific, coincident with observed changes in prey distribution and abundance on a circumpolar scale. Comparing foraging assignments with whaling records since the 18th century showed remarkable stability in use of mid-latitude foraging areas. We attribute this consistency across four centuries to the physical stability of ocean fronts and resulting productivity in mid-latitude ecosystems of the Southern Ocean compared with polar regions that may be more influenced by recent climate change.


Assuntos
Mudança Climática , Ecossistema , Animais , Regiões Antárticas , Efeitos Antropogênicos , Oceano Índico
2.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33723075

RESUMO

Ubiquitin is a common posttranslational modification canonically associated with targeting proteins to the 26S proteasome for degradation and also plays a role in numerous other nondegradative cellular processes. Ubiquitination at certain sites destabilizes the substrate protein, with consequences for proteasomal processing, while ubiquitination at other sites has little energetic effect. How this site specificity-and, by extension, the myriad effects of ubiquitination on substrate proteins-arises remains unknown. Here, we systematically characterize the atomic-level effects of ubiquitination at various sites on a model protein, barstar, using a combination of NMR, hydrogen-deuterium exchange mass spectrometry, and molecular dynamics simulation. We find that, regardless of the site of modification, ubiquitination does not induce large structural rearrangements in the substrate. Destabilizing modifications, however, increase fluctuations from the native state resulting in exposure of the substrate's C terminus. Both of the sites occur in regions of barstar with relatively high conformational flexibility. Nevertheless, destabilization appears to occur through different thermodynamic mechanisms, involving a reduction in entropy in one case and a loss in enthalpy in another. By contrast, ubiquitination at a nondestabilizing site protects the substrate C terminus through intermittent formation of a structural motif with the last three residues of ubiquitin. Thus, the biophysical effects of ubiquitination at a given site depend greatly on local context. Taken together, our results reveal how a single posttranslational modification can generate a broad array of distinct effects, providing a framework to guide the design of proteins and therapeutics with desired degradation and quality control properties.


Assuntos
Ubiquitina/química , Ubiquitina/metabolismo , Hidrogênio/química , Fenômenos Mecânicos , Simulação de Dinâmica Molecular , Conformação Proteica , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteínas/metabolismo , Relação Estrutura-Atividade , Ubiquitinação
3.
J Environ Manage ; 368: 122116, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39116808

RESUMO

Marine protected areas (MPAs) are a commonly used management tool to safeguard marine life from anthropogenic impacts, yet their efficacy often remains untested. Evaluating how highly dynamic marine species use static MPAs is challenging but becoming more feasible with the advancement of telemetry data. Here, we focus on southern right whales (Eubalaena australis, SRWs) in the waters off Aotearoa/New Zealand, which declined from 30,000 whales to fewer than 40 mature females due to whaling. Now numbering in the low thousands, the key socializing and nursery areas for this population in the remote subantarctic islands are under the protection of different types of MPAs. However, the effectiveness of these MPAs in encompassing important whale habitat and protecting the whales from vessel traffic has not been investigated. To address this, we analyzed telemetry data from 29 SRWs tagged at the Auckland Islands between 2009 and 2022. We identified two previously unknown and currently unprotected areas that were used by the whales for important behaviors such as foraging, socializing, or resting. Additionally, by combining whale locations and vessel tracking data (2020-2022) during peak breeding period (June to October), we found high spatiotemporal overlap between whales and vessels within several MPAs, suggesting the whales could still be vulnerable to multiple anthropogenic stressors even when within areas designated for protection. Our results identify areas to be prioritized for future monitoring and investigation to support the ongoing recovery of this SRW population, as well as highlight the overarching importance of assessing MPA effectiveness post-implementation, especially in a changing climate.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Conservação dos Recursos Naturais/métodos , Nova Zelândia , Migração Animal , Baleias , Feminino
4.
J Biol Chem ; 298(3): 101697, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35148989

RESUMO

Chaperones of the heat shock protein 70 (Hsp70) family engage in protein-protein interactions with many cochaperones. One "hotspot" for cochaperone binding is the EEVD motif, found at the extreme C terminus of cytoplasmic Hsp70s. This motif is known to bind tetratricopeptide repeat domain cochaperones, such as the E3 ubiquitin ligase CHIP. In addition, the EEVD motif also interacts with a structurally distinct domain that is present in class B J-domain proteins, such as DnaJB4. These observations suggest that CHIP and DnaJB4 might compete for binding to Hsp70's EEVD motif; however, the molecular determinants of such competition are not clear. Using a collection of EEVD-derived peptides, including mutations and truncations, we explored which residues are critical for binding to both CHIP and DnaJB4. These results revealed that some features, such as the C-terminal carboxylate, are important for both interactions. However, CHIP and DnaJB4 also had unique preferences, especially at the isoleucine position immediately adjacent to the EEVD. Finally, we show that competition between these cochaperones is important in vitro, as DnaJB4 limits the ubiquitination activity of the Hsp70-CHIP complex, whereas CHIP suppresses the client refolding activity of the Hsp70-DnaJB4 complex. Together, these data suggest that the EEVD motif has evolved to support diverse protein-protein interactions, such that competition between cochaperones may help guide whether Hsp70-bound proteins are folded or degraded.


Assuntos
Proteínas de Choque Térmico HSP70 , Chaperonas Moleculares , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Ligação Proteica , Dobramento de Proteína , Ubiquitina-Proteína Ligases/metabolismo
5.
J Am Chem Soc ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36753572

RESUMO

The aggregation of tau into insoluble fibrils is a defining feature of neurodegenerative tauopathies. However, tau has a positive overall charge and is highly soluble; so, polyanions, such as heparin, are typically required to promote its aggregation in vitro. There are dozens of polyanions in living systems, and it is not clear which ones might promote this process. Here, we systematically measure the ability of 37 diverse, anionic biomolecules to initiate tau aggregation using either wild-type (WT) tau or the disease-associated P301S mutant. We find that polyanions from many different structural classes can promote fibril formation and that P301S tau is sensitive to a greater number of polyanions (28/37) than WT tau (21/37). We also find that some polyanions preferentially reduce the lag time of the aggregation reactions, while others enhance the elongation rate, suggesting that they act on partially distinct steps. From the resulting structure-activity relationships, the valency of the polyanion seems to be an important chemical feature such that anions with low valency tend to be weaker aggregation inducers, even at the same overall charge. Finally, the identity of the polyanion influences fibril morphology based on electron microscopy and limited proteolysis. These results provide insights into the crucial role of polyanion-tau interactions in modulating tau conformational dynamics with implications for understanding the tau aggregation landscape in a complex cellular environment.

6.
Mol Ecol ; 31(6): 1682-1699, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35068013

RESUMO

The harbour seal (Phoca vitulina) is the most widely distributed pinniped, occupying a wide variety of habitats and climatic zones across the Northern Hemisphere. Intriguingly, the harbour seal is also one of the most philopatric seals, raising questions as to how it colonized its current range. To shed light on the origin, remarkable range expansion, population structure and genetic diversity of this species, we used genotyping-by-sequencing to analyse ~13,500 biallelic single nucleotide polymorphisms from 286 individuals sampled from 22 localities across the species' range. Our results point to a Northeast Pacific origin of the harbour seal, colonization of the North Atlantic via the Canadian Arctic, and subsequent stepping-stone range expansions across the North Atlantic from North America to Europe, accompanied by a successive loss of genetic diversity. Our analyses further revealed a deep divergence between modern North Pacific and North Atlantic harbour seals, with finer-scale genetic structure at regional and local scales consistent with strong philopatry. The study provides new insights into the harbour seal's remarkable ability to colonize and adapt to a wide range of habitats. Furthermore, it has implications for current harbour seal subspecies delineations and highlights the need for international and national red lists and management plans to ensure the protection of genetically and demographically isolated populations.


Assuntos
Phoca , Adaptação Fisiológica , Animais , Canadá , Europa (Continente) , Metagenômica , Phoca/genética
7.
Electrophoresis ; 43(20): 1944-1952, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35946549

RESUMO

A simple, rapid method using CE and microchip electrophoresis with C4 D has been developed for the separation of four nonsteroidal anti-inflammatory drugs (NSAIDs) in the environmental sample. The investigated compounds were ibuprofen (IB), ketoprofen (KET), acetylsalicylic acid (ASA), and diclofenac sodium (DIC). In the present study, we applied for the first time microchip electrophoresis with C4 D detection to the separation and detection of ASA, IB, DIC, and KET in the wastewater matrix. Under optimum conditions, the four NSAIDs compounds could be well separated in less than 1 min in a BGE composed of 20 mM His/15 mM Tris, pH 8.6, 2 mM hydroxypropyl-beta-cyclodextrin, and 10% methanol (v/v) at a separation voltage of 1000-1200 V. The proposed method showed excellent repeatability, good sensitivity (LODs ranging between 0.156 and 0.6 mg/L), low cost, high sample throughputs, portable instrumentation for mobile deployment, and extremely lower reagent and sample consumption. The developed method was applied to the analysis of pharmaceuticals in wastewater samples with satisfactory recoveries ranging from 62.5% to 118%.


Assuntos
Eletroforese em Microchip , Cetoprofeno , 2-Hidroxipropil-beta-Ciclodextrina , Anti-Inflamatórios , Anti-Inflamatórios não Esteroides , Aspirina , Diclofenaco , Condutividade Elétrica , Eletroforese Capilar/métodos , Eletroforese em Microchip/métodos , Ibuprofeno , Metanol , Preparações Farmacêuticas , Águas Residuárias
8.
Electrophoresis ; 43(7-8): 857-864, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34936709

RESUMO

Paracetamol (PAC) is one of the most extensively used analgesics and antipyretic drugs to treat mild and moderate pain. P-aminophenol (PAP), the main hydrolytic degradation product of PAC, can be found in environmental water. Recently, CE has been developed for the detection of a wide variety of chemical substances. The purpose of this study is to develop a simple and fast method for the detection and separation of PAC and its main hydrolysis product PAP using CE and microchip electrophoresis with capacitively coupled contactless conductivity detection. The determination of these compounds using microchip electrophoresis with capacitively coupled contactless conductivity detection is being reported for the first time. The separation was run for all analytes using a BGE (20 mM ß-alanine, pH 11) containing 14% (v/v) methanol. The RSDs obtained for migration time were less than 4%, and RSDs obtained for peak area were less than 7%. The detection limits (S/N = 3) that were achieved ranged from 0.3 to 0.6 mg/L without sample preconcentration. The presented method showed rapid analysis time (less than 1 min), high efficiency and precision, low cost, and a significant decrease in the consumption of reagents. The microchip system has proved to be an excellent analytical technique for fast and reliable environmental applications.


Assuntos
Eletroforese em Microchip , Acetaminofen , Aminofenóis , Condutividade Elétrica , Eletroforese Capilar/métodos , Eletroforese em Microchip/métodos , Hidrólise
9.
Nat Chem Biol ; 16(8): 866-875, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32483380

RESUMO

Changes in the cellular environment modulate protein energy landscapes to drive important biology, with consequences for signaling, allostery and other vital processes. The effects of ubiquitination are particularly important because of their potential influence on degradation by the 26S proteasome. Moreover, proteasomal engagement requires unstructured initiation regions that many known proteasome substrates lack. To assess the energetic effects of ubiquitination and how these manifest at the proteasome, we developed a generalizable strategy to produce isopeptide-linked ubiquitin within structured regions of a protein. The effects on the energy landscape vary from negligible to dramatic, depending on the protein and site of ubiquitination. Ubiquitination at sensitive sites destabilizes the native structure and increases the rate of proteasomal degradation. In well-folded proteins, ubiquitination can even induce the requisite unstructured regions needed for proteasomal engagement. Our results indicate a biophysical role of site-specific ubiquitination as a potential regulatory mechanism for energy-dependent substrate degradation.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/química , Ubiquitinação/genética , Animais , Proteínas de Bactérias/metabolismo , Humanos , Camundongos , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica/fisiologia , Proteólise , Ribonucleases/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/fisiologia
10.
Proc Biol Sci ; 288(1949): 20202718, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33878919

RESUMO

A key goal of conservation is to protect biodiversity by supporting the long-term persistence of viable, natural populations of wild species. Conservation practice has long been guided by genetic, ecological and demographic indicators of risk. Emerging evidence of animal culture across diverse taxa and its role as a driver of evolutionary diversification, population structure and demographic processes may be essential for augmenting these conventional conservation approaches and decision-making. Animal culture was the focus of a ground-breaking resolution under the Convention on the Conservation of Migratory Species of Wild Animals (CMS), an international treaty operating under the UN Environment Programme. Here, we synthesize existing evidence to demonstrate how social learning and animal culture interact with processes important to conservation management. Specifically, we explore how social learning might influence population viability and be an important resource in response to anthropogenic change, and provide examples of how it can result in phenotypically distinct units with different, socially learnt behavioural strategies. While identifying culture and social learning can be challenging, indirect identification and parsimonious inferences may be informative. Finally, we identify relevant methodologies and provide a framework for viewing behavioural data through a cultural lens which might provide new insights for conservation management.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Animais Selvagens , Evolução Biológica , Aprendizagem
11.
Proc Biol Sci ; 288(1961): 20211213, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34702078

RESUMO

The deep sea has been described as the last major ecological frontier, as much of its biodiversity is yet to be discovered and described. Beaked whales (ziphiids) are among the most visible inhabitants of the deep sea, due to their large size and worldwide distribution, and their taxonomic diversity and much about their natural history remain poorly understood. We combine genomic and morphometric analyses to reveal a new Southern Hemisphere ziphiid species, Ramari's beaked whale, Mesoplodon eueu, whose name is linked to the Indigenous peoples of the lands from which the species holotype and paratypes were recovered. Mitogenome and ddRAD-derived phylogenies demonstrate reciprocally monophyletic divergence between M. eueu and True's beaked whale (M. mirus) from the North Atlantic, with which it was previously subsumed. Morphometric analyses of skulls also distinguish the two species. A time-calibrated mitogenome phylogeny and analysis of two nuclear genomes indicate divergence began circa 2 million years ago (Ma), with geneflow ceasing 0.35-0.55 Ma. This is an example of how deep sea biodiversity can be unravelled through increasing international collaboration and genome sequencing of archival specimens. Our consultation and involvement with Indigenous peoples offers a model for broadening the cultural scope of the scientific naming process.


Assuntos
Genômica , Baleias , Animais , Núcleo Celular , Filogenia , Baleias/anatomia & histologia , Baleias/genética
12.
Int J Mol Sci ; 22(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072295

RESUMO

Trypsin-like proteases (TLPs) belong to a family of serine enzymes with primary substrate specificities for the basic residues, lysine and arginine, in the P1 position. Whilst initially perceived as soluble enzymes that are extracellularly secreted, a number of novel TLPs that are anchored in the cell membrane have since been discovered. Muco-obstructive lung diseases (MucOLDs) are characterised by the accumulation of hyper-concentrated mucus in the small airways, leading to persistent inflammation, infection and dysregulated protease activity. Although neutrophilic serine proteases, particularly neutrophil elastase, have been implicated in the propagation of inflammation and local tissue destruction, it is likely that the serine TLPs also contribute to various disease-relevant processes given the roles that a number of these enzymes play in the activation of both the epithelial sodium channel (ENaC) and protease-activated receptor 2 (PAR2). More recently, significant attention has focused on the activation of viruses such as SARS-CoV-2 by host TLPs. The purpose of this review was to highlight key TLPs linked to the activation of ENaC and PAR2 and their association with airway dehydration and inflammatory signalling pathways, respectively. The role of TLPs in viral infectivity will also be discussed in the context of the inhibition of TLP activities and the potential of these proteases as therapeutic targets.


Assuntos
COVID-19/enzimologia , Pneumopatias Obstrutivas/enzimologia , SARS-CoV-2/metabolismo , Tripsina/metabolismo , Animais , COVID-19/patologia , Canais Epiteliais de Sódio/metabolismo , Humanos , Pneumopatias Obstrutivas/patologia , Receptor PAR-2/metabolismo
13.
Proc Biol Sci ; 287(1928): 20200318, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32486973

RESUMO

Metapopulation theory assumes a balance between local decays/extinctions and local growth/new colonisations. Here we investigate whether recent population declines across part of the UK harbour seal range represent normal metapopulation dynamics or are indicative of perturbations potentially threatening the metapopulation viability, using 20 years of population trends, location tracking data (n = 380), and UK-wide, multi-generational population genetic data (n = 269). First, we use microsatellite data to show that two genetic groups previously identified are distinct metapopulations: northern and southern. Then, we characterize the northern metapopulation dynamics in two different periods, before and after the start of regional declines (pre-/peri-perturbation). We identify source-sink dynamics across the northern metapopulation, with two putative source populations apparently supporting three likely sink populations, and a recent metapopulation-wide disruption of migration coincident with the perturbation. The northern metapopulation appears to be in decay, highlighting that changes in local populations can lead to radical alterations in the overall metapopulation's persistence and dynamics.


Assuntos
Phoca , Dinâmica Populacional , Animais , Ecossistema , Genética Populacional , Repetições de Microssatélites
14.
Glob Chang Biol ; 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33319502

RESUMO

Rapid anthropogenic environmental change is expected to impact a host of ecological parameters in Southern Ocean ecosystems. Of critical concern are the consequences of these changes on the range of species that show fidelity to migratory destinations, as philopatry is hypothesized to help or hinder adaptation to climate change depending on the circumstances. Many baleen whales show philopatry to feeding grounds and are also capital breeders that meet migratory and reproductive costs through seasonal energy intake. Southern right whales (Eubalaena australis, SRWs) are capital breeders that have a strong relationship between reproductive output and foraging success. The population dynamics of South Africa's population of SRWs are characterized by two distinct periods: the 1990s, a period of high calving rates; and the late 2010s, a period associated with lowered calving rates. Here we use analyses of stable carbon (δ13 C) and nitrogen (δ15 N) isotope values from SRW biopsy samples (n = 122) collected during these two distinct periods to investigate foraging ecology of the South African population of SRWs over a time period coincident with the demographic shift. We show that South African SRWs underwent a dramatic northward shift, and diversification, in foraging strategy from 1990s to 2010s. Bayesian mixing model results suggest that during the 1990s, South African SRWs foraged on prey isotopically similar to South Georgia/Islas Georgias del Sur krill. In contrast, in the 2010s, South African SRWs foraged on prey isotopically consistent with the waters of the Subtropical Convergence, Polar Front and Marion Island. We hypothesize that this shift represents a response to changes in preferred habitat or prey, for example, the decrease in abundance and southward range contraction of Antarctic krill. By linking reproductive decline to changing foraging strategies for the first time in SRWs, we show that altering foraging strategies may not be sufficient to adapt to a changing ocean.

15.
J Hered ; 111(3): 263-276, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32347944

RESUMO

As species recover from exploitation, continued assessments of connectivity and population structure are warranted to provide information for conservation and management. This is particularly true in species with high dispersal capacity, such as migratory whales, where patterns of connectivity could change rapidly. Here we build on a previous long-term, large-scale collaboration on southern right whales (Eubalaena australis) to combine new (nnew) and published (npub) mitochondrial (mtDNA) and microsatellite genetic data from all major wintering grounds and, uniquely, the South Georgia (Islas Georgias del Sur: SG) feeding grounds. Specifically, we include data from Argentina (npub mtDNA/microsatellite = 208/46), Brazil (nnew mtDNA/microsatellite = 50/50), South Africa (nnew mtDNA/microsatellite = 66/77, npub mtDNA/microsatellite = 350/47), Chile-Peru (nnew mtDNA/microsatellite = 1/1), the Indo-Pacific (npub mtDNA/microsatellite = 769/126), and SG (npub mtDNA/microsatellite = 8/0, nnew mtDNA/microsatellite = 3/11) to investigate the position of previously unstudied habitats in the migratory network: Brazil, SG, and Chile-Peru. These new genetic data show connectivity between Brazil and Argentina, exemplified by weak genetic differentiation and the movement of 1 genetically identified individual between the South American grounds. The single sample from Chile-Peru had an mtDNA haplotype previously only observed in the Indo-Pacific and had a nuclear genotype that appeared admixed between the Indo-Pacific and South Atlantic, based on genetic clustering and assignment algorithms. The SG samples were clearly South Atlantic and were more similar to the South American than the South African wintering grounds. This study highlights how international collaborations are critical to provide context for emerging or recovering regions, like the SG feeding ground, as well as those that remain critically endangered, such as Chile-Peru.


Assuntos
Variação Genética , Baleias/genética , Distribuição Animal , Migração Animal , Animais , Brasil , Chile , Comportamento Alimentar , Feminino , Técnicas de Genotipagem , Ilhas , Masculino , Peru
17.
Dis Aquat Organ ; 133(1): 47-56, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31089002

RESUMO

The 1988 and 2002 phocine distemper virus (PDV) outbreaks in European harbour seals Phoca vitulina are among the largest mass mortality events recorded in marine mammals. Despite its large impact on harbour seal population numbers, and 3 decades of studies, many questions regarding the spread and temporal origin of PDV remain unanswered. Here, we sequenced and analysed 7123 bp of the PDV genome, including the coding and non-coding regions of the entire P, M, F and H genes in tissues from 44 harbour seals to shed new light on the origin and spread of PDV in 1988 and 2002. The phylogenetic analyses trace the origin of the PDV strain causing the 1988 outbreak to between May 1987 and April 1988, while the origin of the strain causing the 2002 outbreak can be traced back to between June 2001 and May 2002. The analyses further point to several independent introductions of PDV in 1988, possibly linked to a southward mass immigration of harp seals in the winter and spring of 1987-1988. The vector for the 2002 outbreak is unknown, but the epidemiological analyses suggest the subsequent spread of PDV from the epicentre in the Kattegat, Denmark, to haul-out sites in the North Sea through several independent introductions.


Assuntos
Phoca , Filogenia , Focas Verdadeiras , Animais , Dinamarca , Cinomose , Vírus da Cinomose Focina , Cães , Mar do Norte
18.
Langmuir ; 33(20): 5086-5097, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28463506

RESUMO

Nanoparticles (NPs) are often functionalized with reactive groups such as amines and thiols for the subsequent conjugation of further molecules, e.g., stabilizing polymers, drugs, and proteins for targeting cells or specific diseases. In addition to the quantitative estimation of the reactive conjugation sites, their molecular positioning and nanoscale arrangement on single nanoparticles become more and more important for the tailored engineering and design of functional nanomaterials. Here, we use maleimide or sulfo-succinimidyl ester-modified 1.4 nm gold nanoclusters (AuNCs) to specifically label reactive thiol and amine groups with sub-2-nm precision on metal oxide and polymeric nanostructures. We confirm the binding of AuNCs by measuring and modeling sedimentation properties using analytical centrifugation, imaging their surface distribution and surface distances by transmission electron microscopy (TEM), and comparing the results to ensemble measurements of numbers of reactive surface groups obtained by common photometric assays. We map thiol and amine groups introduced on silica NPs (SiNPs), titania stars (Ti), silica inverse opals (SiOps), and polystyrene NPs (PS NPs). We show that the method is suitable for mapping local, clustered inhomogeneities of the reactive sites on single SiNPs introduced by masking certain areas during surface functionalization. Mapping precise positions of reactive surface groups is essential to the design and tailored ligation of multifunctional nanomaterials.

19.
J Hered ; 107(6): 481-95, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27511190

RESUMO

The dramatic increase in the application of genomic techniques to non-model organisms (NMOs) over the past decade has yielded numerous valuable contributions to evolutionary biology and ecology, many of which would not have been possible with traditional genetic markers. We review this recent progression with a particular focus on genomic studies of marine mammals, a group of taxa that represent key macroevolutionary transitions from terrestrial to marine environments and for which available genomic resources have recently undergone notable rapid growth. Genomic studies of NMOs utilize an expanding range of approaches, including whole genome sequencing, restriction site-associated DNA sequencing, array-based sequencing of single nucleotide polymorphisms and target sequence probes (e.g., exomes), and transcriptome sequencing. These approaches generate different types and quantities of data, and many can be applied with limited or no prior genomic resources, thus overcoming one traditional limitation of research on NMOs. Within marine mammals, such studies have thus far yielded significant contributions to the fields of phylogenomics and comparative genomics, as well as enabled investigations of fitness, demography, and population structure. Here we review the primary options for generating genomic data, introduce several emerging techniques, and discuss the suitability of each approach for different applications in the study of NMOs.


Assuntos
Genômica , Mamíferos/genética , Biologia Marinha , Animais , Evolução Biológica , Genética Populacional , Genoma , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Mamíferos/classificação , Biologia Marinha/métodos , Filogenia , Polimorfismo de Nucleotídeo Único
20.
Mol Ecol Resour ; 24(5): e13955, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38520161

RESUMO

The major histocompatibility complex (MHC) is a highly polymorphic gene family that is crucial in immunity, and its diversity can be effectively used as a fitness marker for populations. Despite this, MHC remains poorly characterised in non-model species (e.g., cetaceans: whales, dolphins and porpoises) as high gene copy number variation, especially in the fast-evolving class I region, makes analyses of genomic sequences difficult. To date, only small sections of class I and IIa genes have been used to assess functional diversity in cetacean populations. Here, we undertook a systematic characterisation of the MHC class I and IIa regions in available cetacean genomes. We extracted full-length gene sequences to design pan-cetacean primers that amplified the complete exon 2 from MHC class I and IIa genes in one combined sequencing panel. We validated this panel in 19 cetacean species and described 354 alleles for both classes. Furthermore, we identified likely assembly artefacts for many MHC class I assemblies based on the presence of class I genes in the amplicon data compared to missing genes from genomes. Finally, we investigated MHC diversity using the panel in 25 humpback and 30 southern right whales, including four paternity trios for humpback whales. This revealed copy-number variable class I haplotypes in humpback whales, which is likely a common phenomenon across cetaceans. These MHC alleles will form the basis for a cetacean branch of the Immuno-Polymorphism Database (IPD-MHC), a curated resource intended to aid in the systematic compilation of MHC alleles across several species, to support conservation initiatives.


Assuntos
Cetáceos , Complexo Principal de Histocompatibilidade , Análise de Sequência de DNA , Animais , Cetáceos/genética , Cetáceos/imunologia , Cetáceos/classificação , Complexo Principal de Histocompatibilidade/genética , Análise de Sequência de DNA/métodos , Variação Genética , Primers do DNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA