Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(13): 3707-3722, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37060269

RESUMO

Warm drylands represent 19% of land surfaces worldwide and host ca. 1100 tree species. The risk of decline due to climate aridification of this neglected biodiversity has been overlooked despite its ecological and societal importance. To fill this gap, we assessed the risk of decline due to climate aridification of tree species in warm drylands based on spatialized occurrence data and climate models. We considered both species vulnerability and exposure, compared the risk of tree species decline across five bioregions and searched for phylogenetic correlates. Depending on the future climate model, from 44% to 88% of warm drylands' tree species will undergo climate aridification with a high risk of decline even under the most optimistic conditions. On a regional scale, the rate of species that will undergo climate aridification in the future varies from 21% in the Old World North, to 90% in Australia, with a risk of decline confirming the high level of risk predicted at the global scale. Using generalized linear mixed models, we found that, species more exposed to climate aridification will be more at risk, but also that species vulnerability is a key driver of their risk of decline. Indeed, the warm drylands specialist species will be less at risk due to climate aridification than species being marginal in warm drylands. We also found that the risk of decline is widespread across the main clades of the phylogeny and involves several evolutionary distinct species. Estimating a high risk of decline for numerous tree species in all warm drylands, including emblematic dryland endemics, our work warns that future increase in aridity could result in an extensive erosion of tree biodiversity in these ecosystems.


Assuntos
Mudança Climática , Ecossistema , Filogenia , Biodiversidade , Clima
2.
Sci Total Environ ; 898: 165567, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37459987

RESUMO

Despite increasing metals and metalloids (MM) human-driven soil contamination, how it simultaneously alters biodiversity and ecosystem functioning remains unknown. We used a wide gradient of a 170-year-old MM soil multi-contamination in Mediterranean scrublands to assess the effects of soil multi-contamination on multiple plant biodiversity facets, microbial communities and ecosystem multifunctionality (EMF). We found an overall positive effect of plant biodiversity on EMF mediated by microbial communities, and allowing offsetting the negative impacts of MM soil multi-contamination, especially on soil water holding capacity and nitrogen content. The diversity of distant plant lineages was the key facet promoting EMF by enhancing microbial communities, whereas the subordinate species richness altered EMF. By developing a holistic approach of these complex relationships between soil multi-contamination, plant biodiversity, microbial communities and ecosystem functioning, our results reveal the potential of plant biodiversity, and especially the diversity of evolutionary distant species, to offset the alteration of ecosystem functioning by MM soil multi-contamination. In this worldwide decade of ecosystems restoration, our study helps to identify relevant facets of plant biodiversity promoting contaminated ecosystem functioning, which is crucial to guide and optimize management efforts aiming to restore ecosystems and preserve human health.


Assuntos
Ecossistema , Solo , Humanos , Biodiversidade , Plantas , Filogenia , Microbiologia do Solo
3.
Sci Data ; 8(1): 89, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758194

RESUMO

Trees play a key role in the structure and function of many ecosystems worldwide. In the Mediterranean Basin, forests cover approximately 22% of the total land area hosting a large number of endemics (46 species). Despite its particularities and vulnerability, the biodiversity of Mediterranean trees is not well known at the taxonomic, spatial, functional, and genetic levels required for conservation applications. The WOODIV database fills this gap by providing reliable occurrences, four functional traits (plant height, seed mass, wood density, and specific leaf area), and sequences from three DNA-regions (rbcL, matK, and trnH-psbA), together with modelled occurrences and a phylogeny for all 210 Euro-Mediterranean tree species. We compiled, homogenized, and verified occurrence data from sparse datasets and collated them on an INSPIRE-compliant 10 × 10 km grid. We also gathered functional trait and genetic data, filling existing gaps where possible. The WOODIV database can benefit macroecological studies in the fields of conservation, biogeography, and community ecology.


Assuntos
Bases de Dados Factuais , Florestas , Árvores , Ecossistema , Região do Mediterrâneo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA