Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 56(43): 5823-5830, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28956592

RESUMO

Alphaviruses are enveloped arboviruses mainly proposed to infect host cells by receptor-mediated endocytosis followed by fusion between the viral envelope and the endosomal membrane. The fusion reaction is triggered by low pH and requires the presence of both cholesterol and sphingolipids in the target membrane, suggesting the involvement of lipid rafts in the cell entry mechanism. In this study, we show for the first time the interaction of an enveloped virus with membrane microdomains isolated from living cells. Using Mayaro virus (MAYV), a New World alphavirus, we verified that virus fusion to these domains occurred to a significant extent upon acidification, although its kinetics was quite slow when compared to that of fusion with artificial liposomes demonstrated in a previous work. Surprisingly, when virus was previously exposed to acidic pH, a condition previously shown to inhibit alphavirus binding and fusion to target membranes as well as infectivity, and then reneutralized, its ability to fuse with membrane microdomains at low pH was retained. Interestingly, this observation correlated with a partial reversion of low pH-induced conformational changes in viral proteins and retention of virus infectivity upon reneutralization. Our results suggest that MAYV entry into host cells could alternatively involve internalization via lipid rafts and that the conformational changes triggered by low pH in the viral spike proteins during the entry process are partially reversible.


Assuntos
Alphavirus/química , Lipossomos/química , Fusão de Membrana , Microdomínios da Membrana/química , Proteínas Virais de Fusão/química , Internalização do Vírus , Alphavirus/metabolismo , Concentração de Íons de Hidrogênio , Microdomínios da Membrana/metabolismo , Proteínas Virais de Fusão/metabolismo
2.
J Gen Virol ; 98(7): 1749-1754, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28699858

RESUMO

Chikungunya (CHIKV) and Zika (ZIKV) viruses are arboviruses which have recently broken their sylvatic isolation and gone on to spread rampantly among humans in some urban areas of the world, especially in Latin America. Given the lack of effective interventions against such viruses, the aim of this work was to evaluate the antiviral potential of bovine lactoferrin (bLf) in their infections. Through viability, plaque, immunofluorescence and nucleic acid quantification assays, our data show that bLf exerts a dose-dependent strong inhibitory effect on the infection of Vero cells by the aforementioned arboviruses, reducing their infection efficiency by up to nearly 80 %, with no expressive cytotoxicity, and that such antiviral activity occurs at the levels of input and output of virus particles. These findings reveal that bLf antimicrobial properties are extendable to CHIKV and ZIKV, underlining a generic inhibition mechanism that can be explored to develop a potential strategy against their infections.


Assuntos
Antivirais/farmacologia , Febre de Chikungunya/virologia , Vírus Chikungunya/efeitos dos fármacos , Lactoferrina/farmacologia , Infecção por Zika virus/virologia , Zika virus/efeitos dos fármacos , Animais , Bovinos , Vírus Chikungunya/genética , Vírus Chikungunya/fisiologia , Chlorocebus aethiops , Humanos , Células Vero , Zika virus/fisiologia
3.
J Biol Chem ; 286(3): 1730-6, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21075845

RESUMO

Alphaviruses are enveloped arboviruses. The viral envelope is derived from the host cell and is positioned between two icosahedral protein shells (T = 4). Because the viral envelope contains glycoproteins involved in cell recognition and entry, the integrity of the envelope is critical for the success of the early events of infection. Differing levels of cholesterol in different hosts leads to the production of alphaviruses with distinct levels of this sterol loaded in the envelope. Using Mayaro virus, a New World alphavirus, we investigated the role of cholesterol on the envelope of alphavirus particles assembled in either mammalian or mosquito cells. Our results show that although quite different in their cholesterol content, Mayaro virus particles obtained from both cells share a similar high level of lateral organization in their envelopes. This organization, as well as viral stability and infectivity, is severely compromised when cholesterol is depleted from the envelope of virus particles isolated from mammalian cells, but virus particles isolated from mosquito cells are relatively unaffected by cholesterol depletion. We suggest that it is not cholesterol itself, but rather the organization of the viral envelope, that is critical for the biological activity of alphaviruses.


Assuntos
Aedes/virologia , Alphavirus/fisiologia , Lipídeos de Membrana/metabolismo , Proteínas do Envelope Viral/metabolismo , Montagem de Vírus/fisiologia , Aedes/citologia , Animais , Chlorocebus aethiops , Colesterol/metabolismo , Cricetinae , Especificidade da Espécie , Células Vero , Internalização do Vírus
4.
Viruses ; 13(1)2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383613

RESUMO

Enveloped viruses rely on different lipid classes present in cell membranes to accomplish several steps of their life cycle in the host. Particularly for alphaviruses, a medically important group of arboviruses, which are part of the Togaviridae family, cholesterol seems to be a critical lipid exploited during infection, although its relevance may vary depending on which stage of the virus life cycle is under consideration and whether infection takes place in vertebrate or invertebrate hosts. In this review, the role of cholesterol in both early and late events of alphavirus infection and how viral replication may affect cholesterol metabolism are summarized, taking into account studies on Old World and New World alphaviruses in different cell lines. Moreover, the importance of cholesterol for the structural stability of alphavirus particles is also discussed, shedding light on the role played by this lipid when they leave the host cell.


Assuntos
Infecções por Alphavirus/virologia , Alphavirus/fisiologia , Colesterol/metabolismo , Interações Hospedeiro-Patógeno , Replicação Viral , Infecções por Alphavirus/metabolismo , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Metabolismo dos Lipídeos , Envelope Viral/química , Envelope Viral/metabolismo , Internalização do Vírus , Liberação de Vírus
5.
Res Integr Peer Rev ; 5(1): 16, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33292815

RESUMO

BACKGROUND: Preprint usage is growing rapidly in the life sciences; however, questions remain on the relative quality of preprints when compared to published articles. An objective dimension of quality that is readily measurable is completeness of reporting, as transparency can improve the reader's ability to independently interpret data and reproduce findings. METHODS: In this observational study, we initially compared independent samples of articles published in bioRxiv and in PubMed-indexed journals in 2016 using a quality of reporting questionnaire. After that, we performed paired comparisons between preprints from bioRxiv to their own peer-reviewed versions in journals. RESULTS: Peer-reviewed articles had, on average, higher quality of reporting than preprints, although the difference was small, with absolute differences of 5.0% [95% CI 1.4, 8.6] and 4.7% [95% CI 2.4, 7.0] of reported items in the independent samples and paired sample comparison, respectively. There were larger differences favoring peer-reviewed articles in subjective ratings of how clearly titles and abstracts presented the main findings and how easy it was to locate relevant reporting information. Changes in reporting from preprints to peer-reviewed versions did not correlate with the impact factor of the publication venue or with the time lag from bioRxiv to journal publication. CONCLUSIONS: Our results suggest that, on average, publication in a peer-reviewed journal is associated with improvement in quality of reporting. They also show that quality of reporting in preprints in the life sciences is within a similar range as that of peer-reviewed articles, albeit slightly lower on average, supporting the idea that preprints should be considered valid scientific contributions.

6.
Sci Rep ; 8(1): 9805, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29955082

RESUMO

The global situation of diseases transmitted by arthropod-borne viruses such as Dengue (DENV), Yellow Fever (YFV), Chikungunya (CHIKV) and Zika (ZIKV) viruses is alarming and treatment of human infection by these arboviruses faces several challenges. The discovery of broad-spectrum antiviral molecules, able to inactivate different groups of viruses, is an interesting approach. The viral envelope is a common structure among arboviruses, being a potential target for antivirals. Porphyrins are amphipathic molecules able to interact with membranes and absorb light, being widely used in photodynamic therapy. Previously, we showed that heme, Co-protoporphyrin IX (CoPPIX) and Sn-protoporphyrin IX (SnPPIX) directly inactivate DENV and YFV infectious particles. Here we demonstrate that the antiviral activity of these porphyrins can be broadened to CHIKV, ZIKV, Mayaro virus, Sindbis virus and Vesicular Stomatitis virus. Porphyrin treatment causes viral envelope protein loss, affecting viral morphology, adsorption and entry into target cells. Also, light-stimulation enhanced the SnPPIX activity against all tested arboviruses. In summary, CoPPIX and SnPPIX were shown to be efficient broad-spectrum compounds to inactivate medically and veterinary important viruses.


Assuntos
Antivirais/farmacologia , Arbovírus/fisiologia , Vírus Chikungunya/fisiologia , Metaloporfirinas/farmacologia , Protoporfirinas/farmacologia , Proteínas do Envelope Viral/metabolismo , Inativação de Vírus/efeitos dos fármacos , Zika virus/fisiologia , Antivirais/uso terapêutico , Infecções por Arbovirus/tratamento farmacológico , Infecções por Arbovirus/virologia , Arbovírus/efeitos dos fármacos , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/virologia , Vírus Chikungunya/efeitos dos fármacos , Vírus Chikungunya/efeitos da radiação , Concentração Inibidora 50 , Luz , Metaloporfirinas/uso terapêutico , Protoporfirinas/uso terapêutico , Inativação de Vírus/efeitos da radiação , Zika virus/efeitos dos fármacos , Zika virus/efeitos da radiação , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/virologia
7.
PeerJ ; 5: e3245, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28462045

RESUMO

Mayaro virus (MAYV) is an emergent sylvatic alphavirus in South America, related to sporadic outbreaks of a chikungunya-like human febrile illness accompanied by severe arthralgia. Despite its high potential for urban emergence, MAYV is still an obscure virus with scarce information about its infection cycle, including the corresponding early events. Even for prototypical alphaviruses, the cell entry mechanism still has some rough edges to trim: although clathrin-mediated endocytosis is quoted as the putative route, alternative paths as distinct as direct virus genome injection through the cell plasma membrane seems to be possible. Our aim was to clarify crucial details on the entry route exploited by MAYV to gain access into the host cell. Tracking the virus since its first contact with the surface of Vero cells by fluorescence microscopy, we show that its entry occurs by a fast endocytic process and relies on fusion with acidic endosomal compartments. Moreover, blocking clathrin-mediated endocytosis or depleting cholesterol from the cell membrane leads to a strong inhibition of viral infection, as assessed by plaque assays. Following this clue, we found that early endosomes and caveolae-derived vesicles are both implicated as target membranes for MAYV fusion. Our findings unravel the very first events that culminate in a productive infection by MAYV and shed light on potential targets for a rational antiviral therapy, besides providing a better comprehension of the entry routes exploited by alphaviruses to get into the cell.

8.
Virology ; 452-453: 297-302, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24606707

RESUMO

Mayaro virus (MAYV) is an arbovirus linked to several sporadic outbreaks of a highly debilitating febrile illness in many regions of South America. MAYV is on the verge of urbanization from the Amazon region and no effective antiviral intervention is available against human infections. Our aim was to investigate whether bovine lactoferrin (bLf), an iron-binding glycoprotein, could hinder MAYV infection. We show that bLf promotes a strong inhibition of virus infection with no cytotoxic effects. Monitoring the effect of bLf on different stages of infection, we observed that virus entry into the cell is the heavily compromised event. Moreover, we found that binding of bLf to the cell is highly dependent on the sulfation of glycosaminoglycans, suggesting that bLf impairs virus entry by blocking these molecules. Our findings highlight the antiviral potential of bLf and reveal an effective strategy against one of the major emerging human pathogens in the neotropics.


Assuntos
Infecções por Alphavirus/virologia , Alphavirus/efeitos dos fármacos , Antivirais/farmacologia , Lactoferrina/farmacologia , Alphavirus/fisiologia , Animais , Bovinos , Humanos , América do Sul , Internalização do Vírus/efeitos dos fármacos
9.
PLoS One ; 8(11): e80785, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24282553

RESUMO

Whole inactivated vaccines (WIVs) possess greater immunogenicity than split or subunit vaccines, and recent studies have demonstrated that WIVs with preserved fusogenic activity are more protective than non-fusogenic WIVs. In this work, we describe the inactivation of human influenza virus X-31 by high hydrostatic pressure (HHP) and analyze the effects on the structure by spectroscopic measurements, light scattering, and electron microscopy. We also investigated the effects of HHP on the glycoprotein activity and fusogenic activity of the viral particles. The electron microscopy data showed pore formation on the viral envelope, but the general morphology was preserved, and small variations were seen in the particle structure. The activity of hemagglutinin (HA) during the process of binding and fusion was affected in a time-dependent manner, but neuraminidase (NA) activity was not affected. Infectious activity ceased after 3 hours of pressurization, and mice were protected from infection after being vaccinated. Our results revealed full viral inactivation with overall preservation of viral structure and maintenance of fusogenic activity, thereby conferring protection against infection. A strong response consisting of serum immunoglobulin IgG1, IgG2a, and serum and mucosal IgA was also detected after vaccination. Thus, our data strongly suggest that applying hydrostatic pressure may be an effective method for developing new vaccines against influenza A as well as other viruses.


Assuntos
Pressão Hidrostática , Influenza Humana/virologia , Fusão de Membrana , Infecções por Orthomyxoviridae/prevenção & controle , Orthomyxoviridae/fisiologia , Animais , Anticorpos Antivirais/biossíntese , Humanos , Camundongos , Microscopia Eletrônica , Orthomyxoviridae/imunologia , Orthomyxoviridae/ultraestrutura , Infecções por Orthomyxoviridae/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA