Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 154(3): 518-29, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23911319

RESUMO

Genes disrupted in schizophrenia may be revealed by de novo mutations in affected persons from otherwise healthy families. Furthermore, during normal brain development, genes are expressed in patterns specific to developmental stage and neuroanatomical structure. We identified de novo mutations in persons with schizophrenia and then mapped the responsible genes onto transcriptome profiles of normal human brain tissues from age 13 weeks gestation to adulthood. In the dorsolateral and ventrolateral prefrontal cortex during fetal development, genes harboring damaging de novo mutations in schizophrenia formed a network significantly enriched for transcriptional coexpression and protein interaction. The 50 genes in the network function in neuronal migration, synaptic transmission, signaling, transcriptional regulation, and transport. These results suggest that disruptions of fetal prefrontal cortical neurogenesis are critical to the pathophysiology of schizophrenia. These results also support the feasibility of integrating genomic and transcriptome analyses to map critical neurodevelopmental processes in time and space in the brain.


Assuntos
Redes Reguladoras de Genes , Mutação , Córtex Pré-Frontal/embriologia , Mapas de Interação de Proteínas , Esquizofrenia/genética , Esquizofrenia/metabolismo , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Análise Mutacional de DNA , Bases de Dados Genéticas , Feminino , Humanos , Masculino , Neurogênese , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Esquizofrenia/fisiopatologia , Transcrição Gênica , Transcriptoma
2.
Proc Natl Acad Sci U S A ; 117(33): 20070-20076, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747562

RESUMO

The genetic characterization of a common phenotype for an entire population reveals both the causes of that phenotype for that place and the power of family-based, population-wide genomic analysis for gene and mutation discovery. We characterized the genetics of hearing loss throughout the Palestinian population, enrolling 2,198 participants from 491 families from all parts of the West Bank and Gaza. In Palestinian families with no prior history of hearing loss, we estimate that 56% of hearing loss is genetic and 44% is not genetic. For the great majority (87%) of families with inherited hearing loss, panel-based genomic DNA sequencing, followed by segregation analysis of large kindreds and transcriptional analysis of participant RNA, enabled identification of the causal genes and mutations, including at distant noncoding sites. Genetic heterogeneity of hearing loss was striking with respect to both genes and alleles: The 337 solved families harbored 143 different mutations in 48 different genes. For one in four solved families, a transcription-altering mutation was the responsible allele. Many of these mutations were cryptic, either exonic alterations of splice enhancers or silencers or deeply intronic events. Experimentally calibrated in silico analysis of transcriptional effects yielded inferences of high confidence for effects on splicing even of mutations in genes not expressed in accessible tissue. Most (58%) of all hearing loss in the population was attributable to consanguinity. Given the ongoing decline in consanguineous marriage, inherited hearing loss will likely be much rarer in the next generation.


Assuntos
Perda Auditiva/congênito , Perda Auditiva/genética , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Consanguinidade , Éxons , Feminino , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Oriente Médio , Mutação , Linhagem , Adulto Jovem
3.
J Allergy Clin Immunol ; 149(1): 327-339, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33864888

RESUMO

BACKGROUND: Most patients with childhood-onset immune dysregulation, polyendocrinopathy, and enteropathy have no genetic diagnosis for their illness. These patients may undergo empirical immunosuppressive treatment with highly variable outcomes. OBJECTIVE: We sought to determine the genetic basis of disease in patients referred with Immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like (IPEX-like) disease, but with no mutation in FOXP3; then to assess consequences of genetic diagnoses for clinical management. METHODS: Genomic DNA was sequenced using a panel of 462 genes implicated in inborn errors of immunity. Candidate mutations were characterized by genomic, transcriptional, and (for some) protein analysis. RESULTS: Of 123 patients with FOXP3-negative IPEX-like disease, 48 (39%) carried damaging germline mutations in 1 of the following 27 genes: AIRE, BACH2, BCL11B, CARD11, CARD14, CTLA4, IRF2BP2, ITCH, JAK1, KMT2D, LRBA, MYO5B, NFKB1, NLRC4, POLA1, POMP, RAG1, SH2D1A, SKIV2L, STAT1, STAT3, TNFAIP3, TNFRSF6/FAS, TNRSF13B/TACI, TOM1, TTC37, and XIAP. Many of these genes had not been previously associated with an IPEX-like diagnosis. For 42 of the 48 patients with genetic diagnoses, knowing the critical gene could have altered therapeutic management, including recommendations for targeted treatments and for or against hematopoietic cell transplantation. CONCLUSIONS: Many childhood disorders now bundled as "IPEX-like" disease are caused by individually rare, severe mutations in immune regulation genes. Most genetic diagnoses of these conditions yield clinically actionable findings. Barriers are lack of testing or lack of repeat testing if older technologies failed to provide a diagnosis.


Assuntos
Diabetes Mellitus Tipo 1/congênito , Diarreia/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças do Sistema Imunitário/congênito , Adolescente , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/terapia , Diarreia/diagnóstico , Diarreia/terapia , Feminino , Expressão Gênica , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Transplante de Células-Tronco Hematopoéticas , Humanos , Doenças do Sistema Imunitário/diagnóstico , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/terapia , Lactente , Recém-Nascido , Masculino , Mutação
4.
J Med Genet ; 58(12): 850-852, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33060287

RESUMO

Current clinical approaches for mutation discovery are based on short sequence reads (100-300 bp) of exons and flanking splice sites targeted by multigene panels or whole exomes. Short-read sequencing is highly accurate for detection of single nucleotide variants, small indels and simple copy number differences but is of limited use for identifying complex insertions and deletions and other structural rearrangements. We used CRISPR-Cas9 to excise complete BRCA1 and BRCA2 genomic regions from lymphoblast cells of patients with breast cancer, then sequenced these regions with long reads (>10 000 bp) to fully characterise all non-coding regions for structural variation. In a family severely affected with early-onset bilateral breast cancer and with negative (normal) results by gene panel and exome sequencing, we identified an intronic SINE-VNTR-Alu retrotransposon insertion that led to the creation of a pseudoexon in the BRCA1 message and introduced a premature truncation. This combination of CRISPR-Cas9 excision and long-read sequencing reveals a class of complex, damaging and otherwise cryptic mutations that may be particularly frequent in tumour suppressor genes replete with intronic repeats.


Assuntos
Proteína BRCA1/genética , Sistemas CRISPR-Cas , Genes Supressores de Tumor , Mutação , Análise de Sequência de DNA/métodos , Proteína BRCA2/genética , Neoplasias da Mama/genética , Éxons/genética , Saúde da Família , Feminino , Mutação em Linhagem Germinativa , Humanos , Íntrons/genética , Mutagênese Insercional , Regiões Promotoras Genéticas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Reprodutibilidade dos Testes , Retroelementos/genética
5.
Proc Natl Acad Sci U S A ; 116(52): 26798-26807, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31843900

RESUMO

Mutations responsible for inherited disease may act by disrupting normal transcriptional splicing. Such mutations can be difficult to detect, and their effects difficult to characterize, because many lie deep within exons or introns where they may alter splice enhancers or silencers or introduce new splice acceptors or donors. Multiple mutation-specific and genome-wide approaches have been developed to evaluate these classes of mutations. We introduce a complementary experimental approach, cBROCA, which yields qualitative and quantitative assessments of the effects of genomic mutations on transcriptional splicing of tumor suppressor genes. cBROCA analysis is undertaken by deriving complementary DNA (cDNA) from puromycin-treated patient lymphoblasts, hybridizing the cDNA to the BROCA panel of tumor suppressor genes, and then multiplex sequencing to very high coverage. At each splice junction suggested by split sequencing reads, read depths of test and control samples are compared. Significant Z scores indicate altered transcripts, over and above naturally occurring minor transcripts, and comparisons of read depths indicate relative abundances of mutant and normal transcripts. BROCA analysis of genomic DNA suggested 120 rare mutations from 150 families with cancers of the breast, ovary, uterus, or colon, in >600 informative genotyped relatives. cBROCA analysis of their transcripts revealed a wide variety of consequences of abnormal splicing in tumor suppressor genes, including whole or partial exon skipping, exonification of intronic sequence, loss or gain of exonic and intronic splicing enhancers and silencers, complete intron retention, hypomorphic alleles, and combinations of these alterations. Combined with pedigree analysis, cBROCA sequencing contributes to understanding the clinical consequences of rare inherited mutations.

6.
Proc Natl Acad Sci U S A ; 115(20): 5241-5246, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712865

RESUMO

BRCA1 is essential for repair of DNA double-strand breaks by homologous recombination, and hence for survival. Complete loss of its function is lethal during early embryonic development. Patients who are compound heterozygous for BRCA1 truncating mutations and missense alleles that retain some DNA repair capacity may survive, albeit with very high risk of early onset breast or ovarian cancer and features of Fanconi anemia. However, a mechanism enabling survival of patients homozygous for BRCA1 truncating mutations has not been described. We studied two unrelated families in which four children presented with multiple congenital anomalies and severe chromosomal fragility. One child developed T cell acute lymphocytic leukemia (ALL), and a second child developed neuroblastoma. Each of the four children was homozygous for a nonsense mutation in BRCA1 exon 11. Homozygosity for the nonsense mutations was viable thanks to the presence of a naturally occurring alternative splice donor in BRCA1 exon 11 that lies 5' of the mutations. The mutations did not affect the alternative splice site, but transcription from it produced an in-frame BRCA1 message with deletion of 3,309 bp. The translated BRCA1 protein was only 40% of normal length, but with intact N- and C-terminal sequences. These patients extend the range of BRCA1-related phenotypes and illustrate how naturally occurring alternative splicing can enable survival, albeit with severe consequences, of otherwise lethal genotypes of an essential gene.


Assuntos
Processamento Alternativo , Proteína BRCA1/genética , Neoplasias da Mama/genética , Códon sem Sentido , Homozigoto , Neoplasias Ovarianas/genética , Adolescente , Adulto , Neoplasias da Mama/patologia , Criança , Pré-Escolar , Feminino , Humanos , Neoplasias Ovarianas/patologia , Linhagem
7.
Ophthalmology ; 127(5): 668-678, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32081490

RESUMO

PURPOSE: To identify susceptibility genes associated with hereditary predisposition to uveal melanoma (UM) in patients with no detectable germline BAP1 alterations. DESIGN: Retrospective case series from academic referral centers. PARTICIPANTS: Cohort of 154 UM patients with high risk of hereditary cancer defined as patients with 1 or more of the following: (1) familial UM, (2) young age (<35 years) at diagnosis, (3) personal history of other primary cancers, and (4) family history of 2 or more primary cancers with no detectable mutation or deletion in BAP1 gene. METHODS: Whole exome sequencing, a cancer gene panel, or both were carried out. Probands included 27 patients with familial UM, 1 patient with bilateral UM, 1 patient with congenital UM, and 125 UM patients with strong personal or family histories, or both, of cancer. Functional validation of variants was carried out by immunohistochemistry, reverse-transcriptase polymerase chain reaction, and genotyping. MAIN OUTCOME MEASURES: Clinical characterization of UM patients with germline alterations in known cancer genes. RESULTS: We identified actionable pathogenic variants in 8 known hereditary cancer predisposition genes (PALB2, MLH1, MSH6, CHEK2, SMARCE1, ATM, BRCA1, and CTNNA1) in 9 patients, including 3 of 27 patients (11%) with familial UM and 6 of 127 patients (4.7%) with a high risk for cancer. Two patients showed pathogenic variants in CHEK2 and PALB2, whereas variants in the other genes each occurred in 1 patient. Biallelic inactivation of PALB2 and MLH1 was observed in tumors from the respective patients. The frequencies of pathogenic variants in PALB2, MLH1, and SMARCE1 in UM patients were significantly higher than the observed frequencies in noncancer controls (PALB2: P = 0.02; odds ratio, 8.9; 95% confidence interval, 1.5-30.6; MLH1: P = 0.04; odds ratio, 25.4; 95% confidence interval, 1.2-143; SMARCE1: P = 0.001; odds ratio, 2047; 95% confidence interval, 52-4.5e15, respectively). CONCLUSIONS: The study provided moderate evidence of gene and disease association of germline mutations in PALB2 and MLH1 with hereditary predisposition to UM. It also identified several other candidate susceptibility genes. The results suggest locus heterogeneity in predisposition to UM. Genetic testing for hereditary predisposition to cancer is warranted in UM patients with strong personal or family history of cancers, or both.


Assuntos
Genes Neoplásicos/genética , Predisposição Genética para Doença/genética , Melanoma/genética , Proteínas de Neoplasias/genética , Neoplasias Uveais/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , DNA de Neoplasias/genética , Feminino , Mutação em Linhagem Germinativa/genética , Humanos , Imuno-Histoquímica , Lactente , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Sequenciamento do Exoma
8.
Clin Genet ; 98(4): 353-364, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33111345

RESUMO

Mutations in more than 150 genes are responsible for inherited hearing loss, with thousands of different, severe causal alleles that vary among populations. The Israeli Jewish population includes communities of diverse geographic origins, revealing a wide range of deafness-associated variants and enabling clinical characterization of the associated phenotypes. Our goal was to identify the genetic causes of inherited hearing loss in this population, and to determine relationships among genotype, phenotype, and ethnicity. Genomic DNA samples from informative relatives of 88 multiplex families, all of self-identified Jewish ancestry, with either non-syndromic or syndromic hearing loss, were sequenced for known and candidate deafness genes using the HEar-Seq gene panel. The genetic causes of hearing loss were identified for 60% of the families. One gene was encountered for the first time in human hearing loss: ATOH1 (Atonal), a basic helix-loop-helix transcription factor responsible for autosomal dominant progressive hearing loss in a five-generation family. Our results show that genomic sequencing with a gene panel dedicated to hearing loss is effective for genetic diagnoses in a diverse population. Comprehensive sequencing enables well-informed genetic counseling and clinical management by medical geneticists, otolaryngologists, audiologists, and speech therapists and can be integrated into newborn screening for deafness.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Surdez/genética , Predisposição Genética para Doença , Perda Auditiva/genética , Adolescente , Adulto , Criança , Pré-Escolar , Surdez/epidemiologia , Surdez/patologia , Feminino , Estudos de Associação Genética , Perda Auditiva/epidemiologia , Perda Auditiva/patologia , Humanos , Israel/epidemiologia , Judeus/genética , Masculino , Linhagem , Adulto Jovem
9.
N Engl J Med ; 375(5): 443-53, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27433846

RESUMO

BACKGROUND: Inherited mutations in DNA-repair genes such as BRCA2 are associated with increased risks of lethal prostate cancer. Although the prevalence of germline mutations in DNA-repair genes among men with localized prostate cancer who are unselected for family predisposition is insufficient to warrant routine testing, the frequency of such mutations in patients with metastatic prostate cancer has not been established. METHODS: We recruited 692 men with documented metastatic prostate cancer who were unselected for family history of cancer or age at diagnosis. We isolated germline DNA and used multiplex sequencing assays to assess mutations in 20 DNA-repair genes associated with autosomal dominant cancer-predisposition syndromes. RESULTS: A total of 84 germline DNA-repair gene mutations that were presumed to be deleterious were identified in 82 men (11.8%); mutations were found in 16 genes, including BRCA2 (37 men [5.3%]), ATM (11 [1.6%]), CHEK2 (10 [1.9% of 534 men with data]), BRCA1 (6 [0.9%]), RAD51D (3 [0.4%]), and PALB2 (3 [0.4%]). Mutation frequencies did not differ according to whether a family history of prostate cancer was present or according to age at diagnosis. Overall, the frequency of germline mutations in DNA-repair genes among men with metastatic prostate cancer significantly exceeded the prevalence of 4.6% among 499 men with localized prostate cancer (P<0.001), including men with high-risk disease, and the prevalence of 2.7% in the Exome Aggregation Consortium, which includes 53,105 persons without a known cancer diagnosis (P<0.001). CONCLUSIONS: In our multicenter study, the incidence of germline mutations in genes mediating DNA-repair processes among men with metastatic prostate cancer was 11.8%, which was significantly higher than the incidence among men with localized prostate cancer. The frequencies of germline mutations in DNA-repair genes among men with metastatic disease did not differ significantly according to age at diagnosis or family history of prostate cancer. (Funded by Stand Up To Cancer and others.).


Assuntos
Reparo do DNA/genética , Mutação em Linhagem Germinativa , Neoplasias da Próstata/genética , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Análise Mutacional de DNA , Predisposição Genética para Doença , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica/genética
10.
Genet Med ; 21(6): 1435-1442, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30374176

RESUMO

PURPOSE: Family studies are an important but underreported source of information for reclassification of variants of uncertain significance (VUS). We evaluated outcomes of a patient-driven framework that offered familial VUS reclassification analysis to any adult with any clinically ascertained VUS from any laboratory in the United States. METHODS: With guidance from FindMyVariant.org, participants recruited their own relatives for study participation. We genotyped relatives, calculated quantitative cosegregation likelihood ratios, and evaluated variant classifications using Tavtigian's unified framework for Bayesian analysis with American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) criteria. We report participation and VUS reclassification rates from the 50 families enrolled for at least one year and reclassification results for 112 variants from the larger 92-family cohort. RESULTS: For the 50-family cohort, 6.7 relatives per family were invited to participate and 67% of relatives returned samples for genotyping. Sixty-one percent of VUS were reclassified, 84% of which were classified as benign or likely benign. Genotyping relatives identified a de novo variant, phase variants, and relatives with phenotypes highly specific for or incompatible with specific classifications. CONCLUSIONS: Motivated families can contribute to successful VUS reclassification at substantially higher rates than those previously published. Clinical laboratories could consider offering family studies to all patients with VUS.


Assuntos
Predisposição Genética para Doença/classificação , Variação Genética/genética , Análise de Sequência de DNA/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , Família , Feminino , Testes Genéticos/métodos , Genômica/métodos , Genótipo , Técnicas de Genotipagem/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Software
11.
Int J Cancer ; 141(4): 750-756, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28486781

RESUMO

Breast cancer among Palestinian women has lower incidence than in Europe or North America, yet is very frequently familial. We studied genetic causes of this familial clustering in a consecutive hospital-based series of 875 Palestinian patients with invasive breast cancer, including 453 women with diagnosis by age 40, or with breast or ovarian cancer in a mother, sister, grandmother or aunt ("discovery series"); and 422 women diagnosed after age 40 and with negative family history ("older-onset sporadic patient series"). Genomic DNA from women in the discovery series was sequenced for all known breast cancer genes, revealing a pathogenic mutation in 13% (61/453) of patients. These mutations were screened in all patients and in 300 Palestinian female controls, revealing 1.0% (4/422) carriers among older, nonfamilial patients and two carriers among controls. The mutational spectrum was highly heterogeneous, including pathogenic mutations in 11 different genes: BRCA1, BRCA2, TP53, ATM, CHEK2, BARD1, BRIP1, PALB2, MRE11A, PTEN and XRCC2. BRCA1 carriers were significantly more likely than other patients to have triple negative tumors (p = 0.03). The single most frequent mutation was TP53 p.R181C, which was significantly enriched in the discovery series compared to controls (p = 0.01) and was responsible for 15% of breast cancers among young onset or familial patients. TP53 p.R181C predisposed specifically to breast cancer with incomplete penetrance, and not to other Li-Fraumeni cancers. Palestinian women with young onset or familial breast cancer and their families would benefit from genetic analysis and counseling.


Assuntos
Árabes/genética , Neoplasias da Mama/genética , Mutação de Sentido Incorreto , Análise de Sequência de DNA/métodos , Proteína Supressora de Tumor p53/genética , Adulto , Idade de Início , Idoso , Neoplasias da Mama/patologia , Feminino , Estudos de Associação Genética , Heterogeneidade Genética , Predisposição Genética para Doença , Humanos , Pessoa de Meia-Idade
12.
N Engl J Med ; 371(6): 497-506, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25099575

RESUMO

BACKGROUND: Germline loss-of-function mutations in PALB2 are known to confer a predisposition to breast cancer. However, the lifetime risk of breast cancer that is conferred by such mutations remains unknown. METHODS: We analyzed the risk of breast cancer among 362 members of 154 families who had deleterious truncating, splice, or deletion mutations in PALB2. The age-specific breast-cancer risk for mutation carriers was estimated with the use of a modified segregation-analysis approach that allowed for the effects of PALB2 genotype and residual familial aggregation. RESULTS: The risk of breast cancer for female PALB2 mutation carriers, as compared with the general population, was eight to nine times as high among those younger than 40 years of age, six to eight times as high among those 40 to 60 years of age, and five times as high among those older than 60 years of age. The estimated cumulative risk of breast cancer among female mutation carriers was 14% (95% confidence interval [CI], 9 to 20) by 50 years of age and 35% (95% CI, 26 to 46) by 70 years of age. Breast-cancer risk was also significantly influenced by birth cohort (P<0.001) and by other familial factors (P=0.04). The absolute breast-cancer risk for PALB2 female mutation carriers by 70 years of age ranged from 33% (95% CI, 25 to 44) for those with no family history of breast cancer to 58% (95% CI, 50 to 66) for those with two or more first-degree relatives with breast cancer at 50 years of age. CONCLUSIONS: Loss-of-function mutations in PALB2 are an important cause of hereditary breast cancer, with respect both to the frequency of cancer-predisposing mutations and to the risk associated with them. Our data suggest the breast-cancer risk for PALB2 mutation carriers may overlap with that for BRCA2 mutation carriers. (Funded by the European Research Council and others.).


Assuntos
Neoplasias da Mama/congênito , Genes BRCA2 , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi , Feminino , Heterozigoto , Humanos , Pessoa de Meia-Idade , Receptor ErbB-2/análise , Receptores de Estrogênio/análise , Receptores de Progesterona/análise , Risco , Deleção de Sequência
13.
Breast Cancer Res Treat ; 160(1): 121-129, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27624329

RESUMO

PURPOSE: Breast cancer-predisposing mutations PALB2 c.1027C>T (p.Gln343*) and PALB2 c.2167_2168delAT have each been observed multiple times in breast cancer families of Italian ancestry. More recently, the c2167_2168delAT mutation was identified in unrelated breast cancer cases of various ancestries. For each mutation, we investigated whether the origin was multiple mutational events (a "hot-spot") or a single event (a founder allele). METHODS: We genotyped and reconstructed haplotypes for 36 participants of Italian, Italian-American, Hispanic, and Nigerian ancestries, using seven short tandem repeat (STR) markers that covered 3 Megabases within and flanking PALB2 on chromosome 16. RESULTS: For PALB2 c.1027C>T, a shared haplotype with a minimum size of 150 kb was shared by all 19 carriers investigated, all of Italian ancestry. This result suggests that this allele arose as a single event in a shared ancestor. For PALB2 c.2167_2168delAT, all 12 carriers from American-Italian and Italian families shared a 1-Mb haplotype, the 3 Hispanic carriers shared a different haplotype of size 2 Mb, and the Nigerian carrier had different alleles at all 7 STR markers. These results suggest that PALB2 c.2167_2168delAT arose multiple times, but that within each population, PALB2 c.2167_2168delAT likely represents a single mutational event. CONCLUSION: We identified two PALB2 mutations that are founder alleles in Italian families, one of which is, independently, also a founder mutation in American-Hispanic breast cancers.


Assuntos
Alelos , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Predisposição Genética para Doença , Haplótipos , Mutação , Feminino , Efeito Fundador , Estudos de Associação Genética , Heterozigoto , Humanos , Itália , Repetições de Microssatélites , Linhagem
14.
Genet Med ; 18(10): 974-81, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26845104

RESUMO

PURPOSE: Screening multiple genes for inherited cancer predisposition expands opportunities for cancer prevention; however, reports of variants of uncertain significance (VUS) may limit clinical usefulness. We used an expert-driven approach, exploiting all available information, to evaluate multigene panels for inherited cancer predisposition in a clinical series that included multiple cancer types and complex family histories. METHODS: For 1,462 sequential patients referred for testing by BROCA or ColoSeq multigene panels, genomic DNA was sequenced and variants were interpreted by multiple experts using International Agency for Research on Cancer guidelines and incorporating evolutionary conservation, known and predicted variant consequences, and personal and family cancer history. Diagnostic yield was evaluated for various presenting conditions and family-history profiles. RESULTS: Of 1,462 patients, 12% carried damaging mutations in established cancer genes. Diagnostic yield varied by clinical presentation. Actionable results were identified for 13% of breast and colorectal cancer patients and for 4% of cancer-free subjects, based on their family histories of cancer. Incidental findings explaining cancer in neither the patient nor the family were present in 1.7% of subjects. Less than 1% of patients carried VUS in BRCA1 or BRCA2. For all genes combined, initial reports contained VUS for 10.5% of patients, which declined to 7.5% of patients after reclassification based on additional information. CONCLUSIONS: Individualized interpretation of gene panels is a complex medical activity. Interpretation by multiple experts in the context of personal and family histories maximizes actionable results and minimizes reports of VUS.Genet Med 18 10, 974-981.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias Colorretais/diagnóstico , Predisposição Genética para Doença , Proteínas de Neoplasias/genética , Adulto , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , Mutação , Fatores de Risco
15.
Breast Cancer Res Treat ; 149(1): 31-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25428789

RESUMO

African Americans have a disproportionate burden of aggressive young-onset breast cancer. Genomic testing for inherited predisposition to breast cancer is increasingly common in clinical practice, but comprehensive mutation profiles remain unknown for most minority populations. We evaluated 289 patients who self-identified as African American with primary invasive breast cancer and with personal or family cancer history or tumor characteristics associated with high genetic risk for all classes of germline mutations in known breast cancer susceptibility genes using a validated targeted capture and multiplex sequencing approach. Sixty-eight damaging germline mutations were identified in 65 (22 %, 95 % CI 18-28 %) of the 289 subjects. Proportions of patients with unequivocally damaging mutations in a breast cancer gene were 26 % (47/180; 95 % confident interval [CI] 20-33 %) of those with breast cancer diagnosis before age 45; 25 % (26/103; 95 % CI 17-35 %) of those with triple-negative breast cancer (TNBC); 29 % (45/156; 95 % CI 22-37 %) of those with a first or second degree relative with breast cancer before age 60 or with ovarian cancer; and 57 % (4/7; 95 % CI 18-90 %) of those with both breast and ovarian cancer. Of patients with mutations, 80 % (52/65) carried mutations in BRCA1 and BRCA2 genes and 20 % (13/65) carried mutations in PALB2, CHEK2, BARD1, ATM, PTEN, or TP53. The mutational allelic spectrum was highly heterogeneous, with 57 different mutations in 65 patients. Of patients meeting selection criteria other than family history (i.e., with young age at diagnosis or TNBC), 48 % (64/133) had very limited information about the history of cancer in previous generations of their families. Mutations in BRCA1 and BRCA2 or another breast cancer gene occur in one in four African American breast cancer patients with early onset disease, family history of breast or ovarian cancer, or TNBC. Each of these criteria defines patients who would benefit from genomic testing and novel therapies targeting DNA repair pathways.


Assuntos
Proteína BRCA2/genética , Predisposição Genética para Doença , Neoplasias Ovarianas/genética , Neoplasias de Mama Triplo Negativas/genética , Adulto , Negro ou Afro-Americano/genética , Idade de Início , Idoso , Proteína BRCA1/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , Mutação , Neoplasias Ovarianas/patologia , PTEN Fosfo-Hidrolase/genética , Neoplasias de Mama Triplo Negativas/patologia
17.
Genet Med ; 16(10): 783-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24675673

RESUMO

PURPOSE: Single-exon inversions have rarely been described in clinical syndromes and are challenging to detect using Sanger sequencing. We report the case of a 40-year-old woman with adenomatous colon polyps too numerous to count and who had a complex inversion spanning the entire exon 10 in APC (the gene encoding for adenomatous polyposis coli), causing exon skipping and resulting in a frameshift and premature protein truncation. METHODS: In this study, we employed complete APC gene sequencing using high-coverage next-generation sequencing by ColoSeq, analysis with BreakDancer and SLOPE software, and confirmatory transcript analysis. RESULTS: ColoSeq identified a complex small genomic rearrangement consisting of an inversion that results in translational skipping of exon 10 in the APC gene. This mutation would not have been detected by traditional sequencing or gene-dosage methods. CONCLUSION: We report a case of adenomatous polyposis resulting from a complex single-exon inversion. Our report highlights the benefits of large-scale sequencing methods that capture intronic sequences with high enough depth of coverage-as well as the use of informatics tools-to enable detection of small pathogenic structural rearrangements.


Assuntos
Polipose Adenomatosa do Colo/genética , Éxons/genética , Mutação da Fase de Leitura , Genes APC , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Adulto , Sequência de Bases , Inversão Cromossômica , Cromossomos Humanos Par 5/genética , Feminino , Humanos , Íntrons/genética
18.
Proc Natl Acad Sci U S A ; 108(44): 18032-7, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22006311

RESUMO

Inherited loss-of-function mutations in BRCA1 and BRCA2 and other tumor suppressor genes predispose to ovarian carcinomas, but the overall burden of disease due to inherited mutations is not known. Using targeted capture and massively parallel genomic sequencing, we screened for germ-line mutations in 21 tumor suppressor genes in genomic DNA from women with primary ovarian, peritoneal, or fallopian tube carcinoma. Subjects were consecutively enrolled at diagnosis and not selected for age or family history. All classes of mutations, including point mutations and large genomic deletions and insertions, were detected. Of 360 subjects, 24% carried germ-line loss-of-function mutations: 18% in BRCA1 or BRCA2 and 6% in BARD1, BRIP1, CHEK2, MRE11A, MSH6, NBN, PALB2, RAD50, RAD51C, or TP53. Six of these genes were not previously implicated in inherited ovarian carcinoma. Primary carcinomas were generally characterized by genomic loss of normal alleles of the mutant genes. Of women with inherited mutations, >30% had no family history of breast or ovarian carcinoma, and >35% were 60 y or older at diagnosis. More patients with ovarian carcinoma carry cancer-predisposing mutations and in more genes than previously appreciated. Comprehensive genetic testing for inherited carcinoma is warranted for all women with ovarian, peritoneal, or fallopian tube carcinoma, regardless of age or family history. Clinical genetic testing is currently done gene by gene, with each test costing thousands of dollars. In contrast, massively parallel sequencing allows such testing for many genes simultaneously at low cost.


Assuntos
Neoplasias das Tubas Uterinas/genética , Mutação em Linhagem Germinativa , Neoplasias Ovarianas/genética , Neoplasias Peritoneais/genética , Adulto , Idoso , Alelos , Feminino , Genes do Tumor de Wilms , Humanos , Pessoa de Meia-Idade , Mosaicismo
19.
Gynecol Oncol ; 128(3): 483-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23262210

RESUMO

OBJECTIVES: Few studies have comprehensively tested all ovarian cancer patients for BRCA1 and BRCA2 (BRCA1/2) mutations. We sought to determine if clinically identified mutation carriers differed in clinical characteristics and outcomes from mutation carriers not identified during routine clinical care. METHODS: We included women with ovarian, tubal or peritoneal carcinoma. BROCA, an assay using targeted capture and massively parallel sequencing was used to identify mutations in BRCA1/2 and 19 other tumor suppressor genes. We identified subjects with BRCA1/2 mutations using BROCA that had not previously received standard genetic testing (BROCA, n=37) and compared them to subjects with BRCA1/2 mutations identified during routine clinical care (known, n=70), and to those wildtype for 21 genes using BROCA (wildtype, n=291). RESULTS: BROCA mutation carriers were older than known carriers, median age of 58 (range 41-77), vs. 51 (range 33-76, p=0.003, Mann-Whitney). 58/70 (82.9%) of known carriers had a strong family history, compared with 15/37 (40.5%) of BROCA carriers, p<0.0001, (Fisher's Exact). Median overall survival was significantly worse for BROCA mutation carriers compared to known mutation carriers, (45 vs. 93months, p<0.0001, HR 3.47 (1.79-6.72), Log-rank test). The improved survival for BRCA1/2 mutation carriers (known and BROCA) compared with wildtype cases (69 vs. 44months, p=0.0001, HR 0.58 (0.43-0.77), Log-rank test) was driven by known mutation carriers. CONCLUSIONS: Older age, absence of a strong family history, and poor survival are all associated with decreased clinical identification of inherited BRCA1/2 mutations in women with ovarian cancer. Using age and family history to direct genetic testing will miss a significant percentage of mutation carriers. Testing should be initiated at the time of diagnosis to maximize identification of mutations and minimize survival bias.


Assuntos
Genes BRCA1 , Genes BRCA2 , Mutação em Linhagem Germinativa , Neoplasias Ovarianas/genética , Adulto , Fatores Etários , Idoso , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Testes Genéticos , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Análise de Sobrevida
20.
Proc Natl Acad Sci U S A ; 107(28): 12629-33, 2010 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-20616022

RESUMO

Inherited loss-of-function mutations in the tumor suppressor genes BRCA1, BRCA2, and multiple other genes predispose to high risks of breast and/or ovarian cancer. Cancer-associated inherited mutations in these genes are collectively quite common, but individually rare or even private. Genetic testing for BRCA1 and BRCA2 mutations has become an integral part of clinical practice, but testing is generally limited to these two genes and to women with severe family histories of breast or ovarian cancer. To determine whether massively parallel, "next-generation" sequencing would enable accurate, thorough, and cost-effective identification of inherited mutations for breast and ovarian cancer, we developed a genomic assay to capture, sequence, and detect all mutations in 21 genes, including BRCA1 and BRCA2, with inherited mutations that predispose to breast or ovarian cancer. Constitutional genomic DNA from subjects with known inherited mutations, ranging in size from 1 to >100,000 bp, was hybridized to custom oligonucleotides and then sequenced using a genome analyzer. Analysis was carried out blind to the mutation in each sample. Average coverage was >1200 reads per base pair. After filtering sequences for quality and number of reads, all single-nucleotide substitutions, small insertion and deletion mutations, and large genomic duplications and deletions were detected. There were zero false-positive calls of nonsense mutations, frameshift mutations, or genomic rearrangements for any gene in any of the test samples. This approach enables widespread genetic testing and personalized risk assessment for breast and ovarian cancer.


Assuntos
Testes Genéticos , Mutação , Neoplasias Ovarianas/genética , Proteína BRCA2/genética , Sequência de Bases , Feminino , Mutação da Fase de Leitura , Genes BRCA1 , Genes BRCA2 , Genoma , Humanos , Mutagênese Insercional , Neoplasias Ovarianas/diagnóstico , Medição de Risco , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA