Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 221: 381-397, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36058396

RESUMO

In this work, oxidized sucrose (OS), which is a safe bio-based and non-toxic polyaldehyde, was used as a crosslinker in defibrillated bacterial cellulose (BC) sponges obtained by freeze-drying. For mimicking the proteins' crosslinking, BC was first modified with an aminosilane to partially replace the OH groups on the BC surface with more reactive amino groups. Further, the aminosilane-grafted bacterial cellulose (BCA) was crosslinked with OS in different concentrations and thermally cured. Functionalized bacterial celluloses showed a good thermal stability, comparable to that of unmodified cellulose and much improved mechanical properties. A threefold increase in the compression strength was obtained for the BCA scaffold after crosslinking and curing. This was correlated with the uniform pore structure emphasized by the micro-CT and SEM analyses. The OS-crosslinked BCA scaffolds were not cytotoxic and showed a porosity of around 80 %, which was almost 100 % open porosity. This study shows that the crosslinking of aminated BC scaffolds with OS allows the obtaining of 3D cellulose structures with good mechanical properties and high porosity, suitable for soft tissue engineering. The results recommend this new method as an innovative approach to obtaining biomaterial scaffolds that mimic the natural extracellular matrix.


Assuntos
Nanofibras , Nanofibras/química , Celulose/química , Alicerces Teciduais/química , Sacarose/farmacologia , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Porosidade
2.
Int J Biol Macromol ; 164: 1867-1878, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32758612

RESUMO

The application of bio-based and biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is restricted by its high cost and brittleness. In the present work, these deficiencies were overcome by the manufacture of PHBV foams using thermally expandable microspheres (TES). Nanocellulose (Nc) and a crosslinking agent were added to PHBV-TES to control the foam structure and to improve the mechanical properties. Foams with almost perfect pores, well embedded in the polymer matrix, were obtained by a simple melt molding process. The closed-cell foams have a density 2.5-2.7 times lower than that of PHBV. The addition of Nc increased the expansion ratio, cell density and porosity and also led to a more uniform cell size distribution. The incorporation of the crosslinking agent, together with Nc and TES, increased the glass transition temperature with about 7 °C and strengthened the PHBV-Nc interactions. PHBV foams showed a 1.7-3 times higher deformation compared to PHBV and absorbed up to 15 times more energy. The fully biodegradable PHBV-Nc foams obtained in this work exhibit an advantageous porosity, good specific mechanical properties and high energy absorption, being promising alternatives for insulation, packaging or biomedical application.


Assuntos
Celulose/química , Poliésteres/síntese química , Poli-Hidroxialcanoatos/química , Materiais Biocompatíveis/química , Teste de Materiais , Nanocompostos/química , Poliésteres/química , Porosidade , Temperatura , Resistência à Tração , Engenharia Tecidual
3.
Mater Sci Eng C Mater Biol Appl ; 110: 110740, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204048

RESUMO

Three-dimensional (3D) porous structures with controlled pore size and interconnected pores, good mechanical properties and biocompatibility are of great interest for tissue engineering. In this work we propose a new strategy to obtain highly porous 3D structures with improved properties using bacterial cellulose (BC) and eco-friendly additives and processes. Glucose, vanillin and citric acid were used as non-toxic and cheap cross-linkers and γ-aminopropyltriethoxysilane was used to partially replace the surface OH groups of cellulose with amino groups. The efficiency of grafting and cross-linking reactions was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The morphological investigation of BC sponges revealed a multi-hierarchical organization after functionalization and cross-linking. Micro-computed tomography analysis showed 80-90% open porosity in modified BC sponges. The thermal and mechanical properties of the sponges were influenced by the cross-linker type and concentration. The strength-to-weight ratio of BC sponges cross-linked with glucose and citric acid was 150% and 120% higher compared to that of unmodified BC sponge. In vitro assays revealed that the modified BC sponges are non-cytotoxic and do not trigger an inflammatory response in macrophages. This study provides a simple and green method to obtain highly porous cellulose sponges with hierarchical design, biocompatibility and good mechanical properties.


Assuntos
Bactérias/química , Celulose/química , Reagentes de Ligações Cruzadas/química , Teste de Materiais , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Linhagem Celular , Camundongos
4.
Nanomaterials (Basel) ; 8(7)2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949943

RESUMO

Tailoring the surface properties of nanocellulose to improve the compatibility of components in polymer nanocomposites is of great interest. In this work, dispersions of nanocellulose in water and acetonitrile were functionalized by submerged plasmas, with the aim of increasing the quality of this reinforcing agent in biopolymer composite materials. Both the morphology and surface chemistry of nanocellulose were influenced by the application of a plasma torch and filamentary jet plasma in a liquid suspension of nanocellulose. Depending on the type of plasma source and gas mixture the surface chemistry was modified by the incorporation of oxygen and nitrogen containing functional groups. The treatment conditions which lead to nanocellulose based polymer nanocomposites with superior mechanical properties were identified. This work provides a new eco-friendly method for the surface functionalization of nanocellulose directly in water suspension, thus overcoming the disadvantages of chemical treatments.

5.
J Biomed Mater Res A ; 104(10): 2576-84, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27242044

RESUMO

Biocompatible composites play a critical role as scaffolds in tissue engineering. Novel biocomposites made from poly(3-hydroxybutyrate) (PHB), polyhydroxyalkanoate (PHA) and bacterial cellulose (BC) in different concentrations were prepared by solution casting and their thermal and mechanical behavior as well as biocompatibility was characterized. BC addition increased the thermal stability of the polymer matrix as evidenced by thermogravimetric analysis. The crystallinity of PHB and the crystallization temperature decreased with the addition of BC and PHA, thus increasing the processing window. BC in small concentration determined an increase in the mechanical properties due to a concerted action of PHA and filler. Good cells attachment and proliferation were observed for all the biocomposites. By the addition of PHA (more hydrophobic than the matrix) and various amounts of BC (highly hydrophilic), surface properties and cell attachment can be controlled. Cytocompatibility studies using L929 cell line revealed that this material is suitable for biomedical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2576-2584, 2016.


Assuntos
Materiais Biocompatíveis/química , Celulose/análogos & derivados , Hidroxibutiratos/química , Poliésteres/química , Poli-Hidroxialcanoatos/química , Animais , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Módulo de Elasticidade , Gluconacetobacter xylinus/química , Teste de Materiais , Camundongos , Temperatura , Engenharia Tecidual
6.
Stem Cells Int ; 2015: 195096, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106420

RESUMO

The quality of life of patients with chronic wounds can be extremely poor and, therefore, over the past decades, great efforts have been made to develop efficient strategies to improve the healing process and the social impact associated with these conditions. Cell based therapy, as a modern tissue engineering strategy, involves the design of 3D cell-scaffold bioconstructs obtained by preseeding drug loaded scaffolds with undifferentiated cells in order to achieve in situ functional de novo tissue. This paper reports on the development of bionanocomposites based on bacterial cellulose and magnetic nanoparticles (magnetite) for efficient chronic wounds healing. Composites were obtained directly in the cellulose bacterial culture medium by dispersing various amounts of magnetite nanoparticles during the biosynthesis process. After purification and drying, the membranes were characterized by Raman spectroscopy and X-ray diffraction to reveal the presence of magnetite within the bacterial cellulose matrix. Morphological investigation was employed through SEM and TEM analyses on bionanocomposites. The biocompatibility of these innovative materials was studied in relation to human adipose derived stem cells in terms of cellular morphology, viability, and proliferation as well as scaffolds cytotoxic potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA