Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 45(12): 3429-3444, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36222152

RESUMO

Growth suppression and defence signalling are simultaneous strategies that plants invoke to respond to abiotic stress. Here, we show that the drought stress response of poplar trees (Populus trichocarpa) is initiated by a suppression in cell wall derived methanol (MeOH) emissions and activation of acetic acid (AA) fermentation defences. Temperature sensitive emissions dominated by MeOH (AA/MeOH <30%) were observed from physiologically active leaves, branches, detached stems, leaf cell wall isolations and whole ecosystems. In contrast, drought treatment resulted in a suppression of MeOH emissions and strong enhancement in AA emissions together with volatiles acetaldehyde, ethanol, and acetone. These drought-induced changes coincided with a reduction in stomatal conductance, photosynthesis, transpiration, and leaf water potential. The strong enhancement in AA/MeOH emission ratios during drought (400%-3500%) was associated with an increase in acetate content of whole leaf cell walls, which became significantly 13 C2 -labelled following the delivery of 13 C2 -acetate via the transpiration stream. The results are consistent with both enzymatic and nonenzymatic MeOH and AA production at high temperature in hydrated tissues associated with accelerated primary cell wall growth processes, which are downregulated during drought. While the metabolic source(s) require further investigation, the observations are consistent with drought-induced activation of aerobic fermentation driving high rates of foliar AA emissions and enhancements in leaf cell wall O-acetylation. We suggest that atmospheric AA/MeOH emission ratios could be useful as a highly sensitive signal in studies investigating environmental and biological factors influencing growth-defence trade-offs in plants and ecosystems.


Assuntos
Ésteres , Populus , Ésteres/metabolismo , Ecossistema , Estresse Fisiológico , Populus/metabolismo , Secas , Folhas de Planta/metabolismo , Metanol/metabolismo , Parede Celular/metabolismo , Água/metabolismo , Ácido Acético/metabolismo
2.
Glob Chang Biol ; 24(1): 197-211, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28746786

RESUMO

Understanding how climate warming will affect the demographic rates of different ecotypes is critical to predicting shifts in species distributions. Here, we present results from a common garden, climate change experiment in which we measured seedling recruitment of lodgepole pine, a widespread North American conifer that is also planted globally. Seeds from a low-elevation provenance had more than three-fold greater recruitment to their third year than seeds from a high-elevation provenance across sites within and above its native elevation range and across climate manipulations. Heating halved recruitment to the third year of both low- and high-elevation seed sources across the elevation gradient, while watering more than doubled recruitment, alleviating some of the negative effects of heating. Demographic models based on recruitment data from the climate manipulations and long-term observations of adult populations revealed that heating could effectively halt modeled upslope range expansion except when combined with watering. Simulating fire and rapid postfire forest recovery at lower elevations accelerated lodgepole pine expansion into the alpine, but did not alter final abundance rankings among climate scenarios. Regardless of climate scenario, greater recruitment of low-elevation seeds compensated for longer dispersal distances to treeline, assuming colonization was allowed to proceed over multiple centuries. Our results show that ecotypes from lower elevations within a species' range could enhance recruitment and facilitate upslope range shifts with climate change.


Assuntos
Mudança Climática , Florestas , Pinus/fisiologia , Sementes/fisiologia , Demografia , Incêndios , Plântula , Água
3.
Glob Chang Biol ; 23(6): 2383-2395, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27976819

RESUMO

Climate niche models project that subalpine forest ranges will extend upslope with climate warming. These projections assume that the climate suitable for adult trees will be adequate for forest regeneration, ignoring climate requirements for seedling recruitment, a potential demographic bottleneck. Moreover, local genetic adaptation is expected to facilitate range expansion, with tree populations at the upper forest edge providing the seed best adapted to the alpine. Here, we test these expectations using a novel combination of common gardens, seeded with two widely distributed subalpine conifers, and climate manipulations replicated at three elevations. Infrared heaters raised temperatures in heated plots, but raised temperatures more in the forest than at or above treeline because strong winds at high elevation reduced heating efficiency. Watering increased season-average soil moisture similarly across sites. Contrary to expectations, warming reduced Engelmann spruce recruitment at and above treeline, as well as in the forest. Warming reduced limber pine first-year recruitment in the forest, but had no net effect on fourth-year recruitment at any site. Watering during the snow-free season alleviated some negative effects of warming, indicating that warming exacerbated water limitations. Contrary to expectations of local adaptation, low-elevation seeds of both species initially recruited more strongly than high-elevation seeds across the elevation gradient, although the low-provenance advantage diminished by the fourth year for Engelmann spruce, likely due to small sample sizes. High- and low-elevation provenances responded similarly to warming across sites for Engelmann spruce, but differently for limber pine. In the context of increasing tree mortality, lower recruitment at all elevations with warming, combined with lower quality, high-provenance seed being most available for colonizing the alpine, portends range contraction for Engelmann spruce. The lower sensitivity of limber pine to warming indicates a potential for this species to become more important in subalpine forest communities in the coming centuries.


Assuntos
Clima , Florestas , Árvores , Picea , Pinus
4.
Glob Chang Biol ; 21(3): 1358-67, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25358112

RESUMO

While plant litters are the main source of soil organic matter (SOM) in forests, the controllers and pathways to stable SOM formation remain unclear. Here, we address how litter type ((13) C/(15) N-labeled needles vs. fine roots) and placement-depth (O vs. A horizon) affect in situ C and N dynamics in a temperate forest soil after 5 years. Litter type rather than placement-depth controlled soil C and N retention after 5 years in situ, with belowground fine root inputs greatly enhancing soil C (x1.4) and N (x1.2) retention compared with aboveground needles. While the proportions of added needle and fine root-derived C and N recovered into stable SOM fractions were similar, they followed different transformation pathways into stable SOM fractions: fine root transfer was slower than for needles, but proportionally more of the remaining needle-derived C and N was transferred into stable SOM fractions. The stoichiometry of litter-derived C vs. N within individual SOM fractions revealed the presence at least two pools of different turnover times (per SOM fraction) and emphasized the role of N-rich compounds for long-term persistence. Finally, a regression approach suggested that models may underestimate soil C retention from litter with fast decomposition rates.


Assuntos
Carbono/metabolismo , Florestas , Nitrogênio/metabolismo , Pinus/química , Solo/química , California , Folhas de Planta/química , Raízes de Plantas/química , Análise de Regressão , Estações do Ano
5.
Oecologia ; 171(1): 271-82, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22875149

RESUMO

Continued changes in climate are projected to alter the geographic distributions of plant species, in part by affecting where individuals can establish from seed. We tested the hypothesis that warming promotes uphill redistribution of subalpine tree populations by reducing cold limitation at high elevation and enhancing drought stress at low elevation. We seeded limber pine (Pinus flexilis) into plots with combinations of infrared heating and water addition treatments, at sites positioned in lower subalpine forest, the treeline ecotone, and alpine tundra. In 2010, first-year seedlings were assessed for physiological performance and survival over the snow-free growing season. Seedlings emerged in midsummer, about 5-8 weeks after snowmelt. Low temperature was not observed to limit seedling photosynthesis or respiration between emergence and October, and thus experimental warming did not appear to reduce cold limitation at high elevation. Instead, gas exchange and water potential from all sites indicated a prevailing effect of summer moisture stress on photosynthesis and carbon balance. Infrared heaters raised soil growing degree days (base 5 °C, p < 0.001) and August-September mean soil temperature (p < 0.001). Despite marked differences in vegetation cover and meteorological conditions across sites, volumetric soil moisture content (θ) at 5-10 cm below 0.16 and 0.08 m(3) m(-3) consistently corresponded with moderate and severe indications of drought stress in midday stem water potential, stomatal conductance, photosynthesis, and respiration. Seedling survival was greater in watered plots than in heated plots (p = 0.01), and negatively related to soil growing degree days and duration of exposure to θ < 0.08 m(3) m(-3) in a stepwise linear regression model (p < 0.0001). We concluded that seasonal moisture stress and high soil surface temperature imposed a strong limitation to limber pine seedling establishment across a broad elevation gradient, including at treeline, and that these limitations are likely to be enhanced by further climate warming.


Assuntos
Pinus/fisiologia , Temperatura , Altitude , Carbono/metabolismo , Secas , Fotossíntese , Estações do Ano , Plântula , Solo , Árvores , Água
6.
Biogeochemistry ; 165(1): 91-111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637456

RESUMO

Organo-mineral and organo-metal associations play an important role in the retention and accumulation of soil organic carbon (SOC). Recent studies have demonstrated a positive correlation between calcium (Ca) and SOC content in a range of soil types. However, most of these studies have focused on soils that contain calcium carbonate (pH > 6). To assess the importance of Ca-SOC associations in lower pH soils, we investigated their physical and chemical interaction in the grassland soils of Point Reyes National Seashore (CA, USA) at a range of spatial scales. Multivariate analyses of our bulk soil characterisation dataset showed a strong correlation between exchangeable Ca (CaExch; 5-8.3 c.molc kg-1) and SOC (0.6-4%) content. Additionally, linear combination fitting (LCF) of bulk Ca K-edge X-ray absorption near-edge structure (XANES) spectra revealed that Ca was predominantly associated with organic carbon across all samples. Scanning transmission X-ray microscopy near-edge X-ray absorption fine structure spectroscopy (STXM C/Ca NEXAFS) showed that Ca had a strong spatial correlation with C at the microscale. The STXM C NEXAFS K-edge spectra indicated that SOC had a higher abundance of aromatic/olefinic and phenolic C functional groups when associated with Ca, relative to C associated with Fe. In regions of high Ca-C association, the STXM C NEXAFS spectra were similar to the spectrum from lignin, with moderate changes in peak intensities and positions that are consistent with oxidative C transformation. Through this association, Ca thus seems to be preferentially associated with plant-like organic matter that has undergone some oxidative transformation, at depth in acidic grassland soils of California. Our study highlights the importance of Ca-SOC complexation in acidic grassland soils and provides a conceptual model of its contribution to SOC preservation, a research area that has previously been unexplored. Supplementary Information: The online version contains supplementary material available at 10.1007/s10533-023-01059-2.

7.
Plants (Basel) ; 10(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672332

RESUMO

Upregulation of acetate fermentation in plants has recently been described as an evolutionarily conserved drought survival strategy, with the amount of acetate produced directly correlating to survival. However, destructive measurements are required to evaluate acetate-linked drought responses, limiting the temporal and spatial scales that can be studied. Here, 13C-labeling studies with poplar (Populus trichocarpa) branches confirmed that methyl acetate is produced in plants from the acetate-linked acetylation of methanol. Methyl acetate emissions from detached leaves were strongly stimulated during desiccation, with total emissions decreasing with the leaf developmental stage. In addition, diurnal methyl acetate emissions from whole physiologically active poplar branches increased as a function of temperature, and light-dark transitions resulted in significant emission bursts lasting several hours. During experimental drought treatments of potted poplar saplings, light-dark methyl acetate emission bursts were eliminated while strong enhancements in methyl acetate emissions lasting > 6 days were observed with their initiation coinciding with the suppression of transpiration and photosynthesis. The results suggest that methyl acetate emissions represent a novel non-invasive tracer of acetate-mediated temperature and drought survival response in plants. The findings may have important implications for the future understanding of acetate-mediated drought responses to transcription, cellular metabolism, and hormone signaling, as well as its associated changes in carbon cycling and water use from individual plants to whole ecosystems.

8.
Sci Adv ; 7(21)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34020943

RESUMO

Subsoils below 20 cm are an important reservoir in the global carbon cycle, but little is known about their vulnerability under climate change. We measured a statistically significant loss of subsoil carbon (-33 ± 11%) in warmed plots of a conifer forest after 4.5 years of whole-soil warming (4°C). The loss of subsoil carbon was primarily from unprotected particulate organic matter. Warming also stimulated a sustained 30 ± 4% increase in soil CO2 efflux due to increased CO2 production through the whole-soil profile. The observed in situ decline in subsoil carbon stocks with warming is now definitive evidence of a positive soil carbon-climate feedback, which could not be concluded based on increases in CO2 effluxes alone. The high sensitivity of subsoil carbon and the different responses of soil organic matter pools suggest that models must represent these heterogeneous soil dynamics to accurately predict future feedbacks to warming.

9.
PLoS One ; 15(5): e0227591, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32433654

RESUMO

Plants emit high rates of methanol (meOH), generally assumed to derive from pectin demethylation, and this increases during abiotic stress. In contrast, less is known about the emission and source of acetic acid (AA). In this study, Populus trichocarpa (California poplar) leaves in different developmental stages were desiccated and quantified for total meOH and AA emissions together with bulk cell wall acetylation and methylation content. While young leaves showed high emissions of meOH (140 µmol m-2) and AA (42 µmol m-2), emissions were reduced in mature (meOH: 69%, AA: 60%) and old (meOH: 83%, AA: 76%) leaves. In contrast, the ratio of AA/meOH emissions increased with leaf development (young: 35%, mature: 43%, old: 82%), mimicking the pattern of O-acetyl/methyl ester ratios of leaf bulk cell walls (young: 35%, mature: 38%, old: 51%), which is driven by an increase in O-acetyl and decrease in methyl ester content with age. The results are consistent with meOH and AA emission sources from cell wall de-esterification, with young expanding tissues producing highly methylated pectin that is progressively demethyl-esterified. We highlight the quantification of AA/meOH emission ratios as a potential tool for rapid phenotype screening of structural carbohydrate esterification patterns.


Assuntos
Ácido Acético/metabolismo , Parede Celular/metabolismo , Metanol/metabolismo , Folhas de Planta/metabolismo , Acetilação , Atmosfera , Hidrolases de Éster Carboxílico/metabolismo , Esterificação , Metilação , Pectinas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Populus/efeitos dos fármacos , Populus/crescimento & desenvolvimento , Populus/metabolismo , Estresse Fisiológico/genética
10.
Tree Physiol ; 31(6): 615-25, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21757486

RESUMO

Climate change is predicted to cause upward shifts in forest tree distributions, which will require seedling recruitment beyond current forest boundaries. However, predicting the likelihood of successful plant establishment beyond current species' ranges under changing climate is complicated by the interaction of genetic and environmental controls on seedling establishment. To determine how genetics and climate may interact to affect seedling establishment, we transplanted recently germinated seedlings from high- and low-elevation provenances (HI and LO, respectively) of Pinus flexilis in common gardens arrayed along an elevation and canopy gradient from subalpine forest into the alpine zone and examined differences in physiology and morphology between provenances and among sites. Plant dry mass, projected leaf area and shoot:root ratios were 12-40% greater in LO compared with HI seedlings at each elevation. There were no significant changes in these variables among sites except for decreased dry mass of LO seedlings in the alpine site. Photosynthesis, carbon balance (photosynthesis/respiration) and conductance increased >2× with elevation for both provenances, and were 35-77% greater in LO seedlings compared with HI seedlings. There were no differences in dark-adapted chlorophyll fluorescence (Fv/Fm) among sites or between provenances. Our results suggest that for P. flexilis seedlings, provenances selected for above-ground growth may outperform those selected for stress resistance in the absence of harsh climatic conditions, even well above the species' range limits in the alpine zone. This indicates that forest genetics may be important to understanding and managing species' range adjustments due to climate change.


Assuntos
Altitude , Pinus/fisiologia , Árvores/fisiologia , Mudança Climática , Temperatura Baixa , Colorado , Hereditariedade , Fotossíntese/fisiologia , Pinus/genética , Pinus/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Árvores/genética , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA