Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 275(Pt 2): 133809, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38996893

RESUMO

Persistent bacterial infections are the leading risk factor that complicates the healing of chronic wounds. In this work, we formulate mixtures of polyvinyl alcohol (P), chitosan (CH), collagen (C), and honey (H) to produce nanofibrous membranes with healing properties. The honey effect at concentrations of 0 % (PCH and PCHC), 5 % (PCHC-5H), 10 % (PCHC-10H), and 15 % (PCHC-15H) on the physicochemical, antibacterial, and biological properties of the developed nanofibers was investigated. Morphological analysis by SEM demonstrated that PCH and PCHC nanofibers had a uniform and homogeneous distribution on their surfaces. However, the increase in honey content increased the fiber diameter (118.11-420.10) and drastically reduced the porosity of the membranes (15.79-92.62 nm). The addition of honey reduces the water vapor transmission rate (WVTR) and the adsorption properties of the membranes. Mechanical tests revealed that nanofibers were more flexible and elastic when honey was added, specifically the PCHC-15H nanofibers with the lowest modulus of elasticity (15 MPa) and the highest elongation at break (220 %). Also, honey significantly improved the antibacterial efficiency of the nanofibers, mainly PCHC-15H nanofibers, which presented the best bacterial reduction rates against Staphylococcus aureus (59.84 %), Pseudomonas aeruginosa (47.27 %), Escherichia coli (65.07 %), and Listeria monocytogenes (49.58 %). In vitro tests with cell cultures suggest that nanofibers were not cytotoxic and exhibited excellent biocompatibility with human fibroblasts (HFb) and keratinocytes (HaCaT), since all treatments showed higher or similar cell viability as opposed to the cell control. Based on the findings, PVA-chitosan-collagen-honey nanofibrous membranes have promise as an antibacterial dressing substitute.


Assuntos
Antibacterianos , Bandagens , Quitosana , Colágeno , Mel , Membranas Artificiais , Nanofibras , Cicatrização , Quitosana/química , Quitosana/farmacologia , Nanofibras/química , Bandagens/microbiologia , Colágeno/química , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Cicatrização/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Porosidade , Álcool de Polivinil/química , Fibroblastos/efeitos dos fármacos
2.
ACS Omega ; 7(35): 31059-31068, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36092557

RESUMO

The purpose of this paper is to study the effect of polypyrrole (PPy) on cellulose acetate (CA) membranes prepared by the electrospinning technique (controlled variables) in the recovery of gold complexes of aqueous solutions that are environmentally ecofriendly. CA-PPy membranes were characterized by SEM, EDS, FTIR spectroscopy, contact angle measurements, electrical conductivity, and mechanical tests. They were submerged in two aqueous solutions using two gold complexes, AuI2 - and AuBr4 -, at room temperature. The recovery percentage was evaluated for several hours using the atomic adsorption technique for both complexes. The main findings indicate that the percentage of recovery in the first hours of the test was very high (>80%). The adsorption efficiency maxima were similar for both complexes (91%). The Langmuir model suggests the formation of a monolayer on the surface. The electrical conductivity did not change over time, and the mechanical properties indicate reuse in several experiments. Furthermore, the theoretical analysis showed that the system is helpful at acidic pH, funding its minimum energy. It is shown in this study that the used CA-PPy membranes show adsorption, absorption, and reusable properties with the effective recovery of the complexes in the first hours. These membranes could substitute for materials that are not environmentally ecofriendly.

3.
RSC Adv ; 11(25): 15340-15350, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35424077

RESUMO

Wound healing treatment in diabetic patients worldwide represents around 2.1 trillion dollars to global health sectors. This is because of the complications presented in the wound healing process of skin ulcers, such as a lack of macrophage and fibroblast growth factors (TGF-ß1 and PDGF, respectively) that are both needed for extracellular matrix (ECM) synthesis. Therefore, there is a need for research on new and cost-effective materials to enable ECM synthesis. Such materials include co-electrospun nanofibers used as wound dressings, since they have a similar morphology to the ECM, and therefore, possess the advantage of using different materials to accelerate the wound healing process. Co-electrospun nanofibers have a unique structural configuration, formed by a core and a shell. This configuration allows the protection and gradual liberation of healing agent compounds, which could be included in the core. Some of the materials used in nanofibers are polymers, including natural compounds, such as chitosan (which has been proven to possess antimicrobial and therapeutic activity) and gelatin (for its cell growth, adhesion, and organisational capacity in the wound healing process). Synthetics such as polyvinyl-alcohol (PVA) (mainly as a co-spinning agent to chitosan) can also be used. Another bioactive compound that can be used to enhance the wound healing process is eugenol, a terpenoid present in different medicinal plant tissues that have scarring properties. Therefore, the present review analyses the potential use of co-electrospun nanofibers, with chitosan-PVA-eugenol in the core and gelatin in the shell as a wound dressing for diabetic skin ulcers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA