Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 152(1): 99, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35931546

RESUMO

The influence of wind velocity and temperature stratification in the upper stratosphere on the waveform of the infrasound signal received at a distance of 2398 km from the epicenter of the powerful explosion in Beirut that occurred on August 4, 2020 is studied using ray trace and pseudo-differential parabolic equation (PDPE) methods. Given a high temporal variability of the wind velocity in the stratopause predicted by the European Centre for Medium-Range Weather Forecasts model, it is assumed that within the stratopause layer, the increase in effective sound speed with increasing height is very small, on the order of 1 m/s. When modeling propagation of the signal from the explosion, the presence of a fine-scale layered structure of wind velocity and temperature in the real atmosphere was also taken into account. Accounting for the scattering of infrasound by strongly anisotropic (layered) inhomogeneities of the effective sound speed allowed us to explain the appearance of "fast" stratospheric arrivals, their time durations, the time period between successive arrivals (about 110 s), and the waveform of the entire observed signal.

2.
Nature ; 503(7475): 238-41, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24196713

RESUMO

Most large (over a kilometre in diameter) near-Earth asteroids are now known, but recognition that airbursts (or fireballs resulting from nuclear-weapon-sized detonations of meteoroids in the atmosphere) have the potential to do greater damage than previously thought has shifted an increasing portion of the residual impact risk (the risk of impact from an unknown object) to smaller objects. Above the threshold size of impactor at which the atmosphere absorbs sufficient energy to prevent a ground impact, most of the damage is thought to be caused by the airburst shock wave, but owing to lack of observations this is uncertain. Here we report an analysis of the damage from the airburst of an asteroid about 19 metres (17 to 20 metres) in diameter southeast of Chelyabinsk, Russia, on 15 February 2013, estimated to have an energy equivalent of approximately 500 (±100) kilotons of trinitrotoluene (TNT, where 1 kiloton of TNT = 4.185×10(12) joules). We show that a widely referenced technique of estimating airburst damage does not reproduce the observations, and that the mathematical relations based on the effects of nuclear weapons--almost always used with this technique--overestimate blast damage. This suggests that earlier damage estimates near the threshold impactor size are too high. We performed a global survey of airbursts of a kiloton or more (including Chelyabinsk), and find that the number of impactors with diameters of tens of metres may be an order of magnitude higher than estimates based on other techniques. This suggests a non-equilibrium (if the population were in a long-term collisional steady state the size-frequency distribution would either follow a single power law or there must be a size-dependent bias in other surveys) in the near-Earth asteroid population for objects 10 to 50 metres in diameter, and shifts more of the residual impact risk to these sizes.

3.
Sci Rep ; 11(1): 14464, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262124

RESUMO

Stromboli Volcano is well known for its persistent explosive activity. On July 3rd and August 28th 2019, two paroxysmal explosions occurred, generating an eruptive column that quickly rose up to 5 km above sea level. Both events were detected by advanced local monitoring networks operated by Istituto Nazionale di Geofisica e Vulcanologia (INGV) and Laboratorio di Geofisica Sperimentale of the University of Firenze (LGS-UNIFI). Signals were also recorded by the Italian national seismic network at a range of hundreds of kilometres and by infrasonic arrays up to distances of 3700 km. Using state-of-the-art propagation modeling, we identify the various seismic and infrasound phases that are used for precise timing of the eruptions. We highlight the advantage of dense regional seismo-acoustic networks to enhance volcanic signal detection in poorly monitored regions, to provide timely warning of eruptions and reliable source amplitude estimate to Volcanic Ash Advisory Centres (VAAC).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA