Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 603(7899): 95-102, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35197637

RESUMO

Genome-wide association studies (GWAS) have identified thousands of genetic variants linked to the risk of human disease. However, GWAS have so far remained largely underpowered in relation to identifying associations in the rare and low-frequency allelic spectrum and have lacked the resolution to trace causal mechanisms to underlying genes1. Here we combined whole-exome sequencing in 392,814 UK Biobank participants with imputed genotypes from 260,405 FinnGen participants (653,219 total individuals) to conduct association meta-analyses for 744 disease endpoints across the protein-coding allelic frequency spectrum, bridging the gap between common and rare variant studies. We identified 975 associations, with more than one-third being previously unreported. We demonstrate population-level relevance for mutations previously ascribed to causing single-gene disorders, map GWAS associations to likely causal genes, explain disease mechanisms, and systematically relate disease associations to levels of 117 biomarkers and clinical-stage drug targets. Combining sequencing and genotyping in two population biobanks enabled us to benefit from increased power to detect and explain disease associations, validate findings through replication and propose medical actionability for rare genetic variants. Our study provides a compendium of protein-coding variant associations for future insights into disease biology and drug discovery.


Assuntos
Estudo de Associação Genômica Ampla , Proteínas , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único/genética , Proteínas/genética , Sequenciamento do Exoma
2.
Biochem Biophys Res Commun ; 723: 150175, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38820625

RESUMO

BACKGROUND: Variants of the SCN5A gene, which encodes the NaV1.5 cardiac sodium channel, have been linked to arrhythmic disorders associated with dilated cardiomyopathy (DCM). However, the precise pathological mechanisms remain elusive. The present study aimed to elucidate the pathophysiological consequences of the DCM-linked Nav1.5/R219H variant, which is known to generate a gating pore current, using patient-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) cultured in monolayers. METHODS: Ventricular- and atrial-like hiPSC-CM monolayers were generated from DCM patients carrying the R219H SCN5A variant as well as from healthy control individuals. CRISPR-corrected hiPSC-CMs served as isogenic controls. Simultaneous optical mapping of action potentials (APs) and calcium transients (CaTs) was employed to measure conduction velocities (CVs) and AP durations (APDs) and served as markers of electrical excitability. Calcium handling was evaluated by assessing CaT uptake (half-time to peak), recapture (tau of decay), and durations (TD50 and TD80). A multi-electrode array (MEA) analysis was conducted on hiPSC-CM monolayers to measure field potential (FP) parameters, including corrected Fridericia FP durations (FPDc). RESULTS: Our results revealed that CVs were significantly reduced by more than 50 % in both ventricular- and atrial-like hiPSC-CM monolayers carrying the R219H variant compared to the control group. APDs were also prolonged in the R219H group compared to the control and CRISPR-corrected groups. CaT uptake, reuptake, and duration were also markedly delayed in the R219H group compared to the control and CRISPR-corrected groups in both the ventricular- and the atrial-like hiPSC-CM monolayers. Lastly, the MEA data revealed a notably prolonged FPDc in the ventricular- and atrial-like hiPSC-CMs carrying the R219H variant compared to the control and isogenic control groups. CONCLUSIONS: These findings highlight the impact of the gating pore current on AP propagation and calcium homeostasis within a functional syncytium environment and offer valuable insights into the potential mechanisms underlying DCM pathophysiology.


Assuntos
Potenciais de Ação , Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Canal de Sódio Disparado por Voltagem NAV1.5 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/citologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/fisiopatologia , Cardiomiopatia Dilatada/patologia , Cálcio/metabolismo , Ativação do Canal Iônico , Células Cultivadas , Fenômenos Eletrofisiológicos
3.
J Cardiovasc Electrophysiol ; 35(6): 1219-1228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38654386

RESUMO

The limited literature and increasing interest in studies on cardiac electrophysiology, explicitly focusing on cardiac ion channelopathies and sudden cardiac death in diverse populations, has prompted a comprehensive examination of existing research. Our review specifically targets Hispanic/Latino and Indigenous populations, which are often underrepresented in healthcare studies. This review encompasses investigations into genetic variants, epidemiology, etiologies, and clinical risk factors associated with arrhythmias in these demographic groups. The review explores the Hispanic paradox, a phenomenon linking healthcare outcomes to socioeconomic factors within Hispanic communities in the United States. Furthermore, it discusses studies exemplifying this observation in the context of arrhythmias and ion channelopathies in Hispanic populations. Current research also sheds light on disparities in overall healthcare quality in Indigenous populations. The available yet limited literature underscores the pressing need for more extensive and comprehensive research on cardiac ion channelopathies in Hispanic/Latino and Indigenous populations. Specifically, additional studies are essential to fully characterize pathogenic genetic variants, identify population-specific risk factors, and address health disparities to enhance the detection, prevention, and management of arrhythmias and sudden cardiac death in these demographic groups.


Assuntos
Arritmias Cardíacas , Canalopatias , Morte Súbita Cardíaca , Predisposição Genética para Doença , Hispânico ou Latino , Humanos , Morte Súbita Cardíaca/etnologia , Morte Súbita Cardíaca/etiologia , Canalopatias/genética , Canalopatias/etnologia , Canalopatias/mortalidade , Canalopatias/diagnóstico , Arritmias Cardíacas/etnologia , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/genética , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/mortalidade , Fatores de Risco , Medição de Risco , Disparidades nos Níveis de Saúde , Masculino , Disparidades em Assistência à Saúde/etnologia , Feminino , Estados Unidos/epidemiologia , Fenótipo , Prognóstico , Adulto , Fatores Raciais , Potenciais de Ação , Pessoa de Meia-Idade
4.
Europace ; 25(1): 101-111, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35942675

RESUMO

AIMS: Ventricular fibrillation (VF) occurring in the acute phase of ST-elevation myocardial infarction (STEMI) is the leading cause of sudden cardiac death worldwide. Several studies showed that reduced connexin 43 (Cx43) expression and reduced conduction velocity increase the risk of VF in acute myocardial infarction (MI). Furthermore, genetic background might predispose individuals to primary VF (PVF). The primary objective was to evaluate the presence of GJA1 variants in STEMI patients. The secondary objective was to evaluate the arrhythmogenic impact of GJA1 variants in STEMI patients with VF. METHODS AND RESULTS: The MAP-IDM prospective cohort study included 966 STEMI patients and was designed to identify genetic predisposition to VF. A total of 483 (50.0%) STEMI patients with PVF were included. The presence of GJA1 variants increased the risk of VF in STEMI patients [from 49.1 to 70.8%, P = 0.0423; odds ratio (OR): 0.40; 95% confidence interval: 0.16-0.97; P = 0.04]. The risk of PVF decreased with beta-blocker intake (from 53.5 to 44.8%, P = 0.0085), atrial fibrillation (from 50.7 to 26.4%, P = 0.0022), and with left ventricular ejection fraction >50% (from 60.2 to 41.4%, P < 0.0001). Among 16 GJA1 variants, three novel heterozygous missense variants were identified in three patients: V236I, H248R, and I327M. In vitro studies of these variants showed altered Cx43 localization and decreased cellular communication, mainly during acidosis. CONCLUSION: Connexin 43 variants are associated with increased VF susceptibility in STEMI patients. Restoring Cx43 function may be a potential therapeutic target to prevent PVF in patients with acute MI. CLINICAL TRIAL REGISTRATION: Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT00859300.


Assuntos
Infarto do Miocárdio , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Fibrilação Ventricular/diagnóstico , Fibrilação Ventricular/genética , Fibrilação Ventricular/complicações , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/genética , Infarto do Miocárdio com Supradesnível do Segmento ST/complicações , Conexina 43/genética , Estudos Prospectivos , Volume Sistólico , Função Ventricular Esquerda , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Fatores de Risco
5.
Gene Ther ; 29(12): 698-709, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35075265

RESUMO

Myotonic dystrophy, or dystrophia myotonica type 1 (DM1), is a multi-systemic disorder and is the most common adult form of muscular dystrophy. It affects not only muscles but also many organs, including the brain. Cerebral impairments include cognitive deficits, daytime sleepiness, and loss of visuospatial and memory functions. The expression of mutated transcripts with CUG repeats results in a gain of toxic mRNA function. The antisense oligonucleotide (ASO) strategy to treat DM1 brain deficits is limited by the fact that ASOs do not cross the blood-brain barrier after systemic administration, indicating that other methods of delivery should be considered. ASO technology has emerged as a powerful tool for developing potential new therapies for a wide variety of human diseases, and its potential has been proven in a recent clinical trial. Targeting DMPK mRNA in neural cells derived from human induced pluripotent stem cells obtained from a DM1 patient with the IONIS 486178 ASO abolished CUG-expanded foci, enabled nuclear redistribution of MBNL1/2, and corrected aberrant splicing. Intracerebroventricular injection of the IONIS 486178 ASO in DMSXL mice decreased the levels of mutant DMPK mRNAs by up to 70% throughout different brain regions. It also reversed behavioral abnormalities following neonatal administration. The present study indicated that the IONIS 486178 ASO targets mutant DMPK mRNAs in the brain and strongly supports the feasibility of a therapy for DM1 patients based on the intrathecal injection of an ASO.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofia Miotônica , Adulto , Humanos , Animais , Camundongos , Distrofia Miotônica/terapia , Distrofia Miotônica/tratamento farmacológico , Miotonina Proteína Quinase/genética , Miotonina Proteína Quinase/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Expansão das Repetições de Trinucleotídeos , Proteínas de Ligação a RNA/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Oligonucleotídeos/uso terapêutico , Encéfalo/metabolismo
6.
J Neurophysiol ; 127(5): 1388-1397, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35417276

RESUMO

SCN2A encodes a voltage-gated sodium channel (NaV1.2) expressed throughout the central nervous system in predominantly excitatory neurons. Pathogenic variants in SCN2A are associated with epilepsy and neurodevelopmental disorders. Genotype-phenotype correlations have been described, with loss-of-function variants typically being associated with neurodevelopmental delay and later-onset seizures, whereas gain-of-function variants more often result in early infantile-onset epilepsy. However, the true electrophysiological effects of most disease-causing SCN2A variants have yet to be characterized. We report an infant who presented with migrating focal seizures in the neonatal period. She was found to have a mosaic c.2635G>A, p.Gly879Arg variant in SCN2A. Voltage-clamp studies of the variant expressed on adult and neonatal NaV1.2 isoforms demonstrated a mixed gain and loss of function, with predominantly a loss-of-function effect with reduced cell surface expression and current density. Additional small electrophysiological alterations included a decrease in the voltage dependence of activation and an increase in the voltage dependence of inactivation. This finding of a predominantly loss-of-function effect was unexpected, as the infant's early epilepsy onset would have suggested a predominantly gain-of-function effect. This case illustrates that our understanding of genotype-phenotype correlations is still limited and highlights the complexity of the underlying electrophysiological effects of SCN2A variants.NEW & NOTEWORTHY Voltage-gated sodium channels play an important role in the central nervous system, mutations in which have been reported to be responsible for epilepsy. We report here an infant presenting with epilepsy of infancy with migrating focal seizures (EIMFS) in the neonatal period with a mosaic c.2635G>A, resulting in a p.Gly879Arg missense mutation on the SCN2A gene encoding NaV1.2 sodium channels. Biophysical characterization of this variant revealed a mixture of gain- and loss-of-function effects.


Assuntos
Epilepsia , Canal de Sódio Disparado por Voltagem NAV1.2 , Epilepsia/genética , Feminino , Humanos , Lactente , Mutação , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Fenótipo , Convulsões/genética
7.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362145

RESUMO

Myotonic dystrophy type 1 (DM1) is a dominant genetic disease in which the expansion of long CTG trinucleotides in the 3' UTR of the myotonic dystrophy protein kinase (DMPK) gene results in toxic RNA gain-of-function and gene mis-splicing affecting mainly the muscles, the heart, and the brain. The CUG-expanded transcripts are a suitable target for the development of antisense oligonucleotide (ASO) therapies. Various chemical modifications of the sugar-phosphate backbone have been reported to significantly enhance the affinity of ASOs for RNA and their resistance to nucleases, making it possible to reverse DM1-like symptoms following systemic administration in different transgenic mouse models. However, specific tissue delivery remains to be improved to achieve significant clinical outcomes in humans. Several strategies, including ASO conjugation to cell-penetrating peptides, fatty acids, or monoclonal antibodies, have recently been shown to improve potency in muscle and cardiac tissues in mice. Moreover, intrathecal administration of ASOs may be an advantageous complementary administration route to bypass the blood-brain barrier and correct defects of the central nervous system in DM1. This review describes the evolution of the chemical design of antisense oligonucleotides targeting CUG-expanded mRNAs and how recent advances in the field may be game-changing by forwarding laboratory findings into clinical research and treatments for DM1 and other microsatellite diseases.


Assuntos
Distrofia Miotônica , Camundongos , Humanos , Animais , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/genética , Miotonina Proteína Quinase/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Camundongos Transgênicos , Oligonucleotídeos/uso terapêutico , Regiões 3' não Traduzidas , Expansão das Repetições de Trinucleotídeos
8.
J Physiol ; 599(5): 1651-1664, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33442870

RESUMO

KEY POINTS: A human NaV 1.6 construct was established to study the biophysical consequences of the R1617Q mutation on NaV 1.6 identified in patients with unclassified epileptic encephalopathy and severe intellectual disability. The R1617Q mutation disrupts the inactivation process of the channel, and more specifically, slows the current decay, increases the persistent sodium current that was blocked by tetrodotoxin and riluzole, and disrupts the inactivation voltage-dependence and increases the kinetics of recovery. In native hippocampal neurons, the R1617Q mutation exhibited a significant increase in action potentials triggered in response to stimulation and a significant increase in the number of neurons that exhibited spontaneous activity compared to neurons expressing WT channels that were inhibited by riluzole. The abnormally persistent current activity caused by the disruption of the channel inactivation process in NaV 1.6/R1617Q may result in epileptic encephalopathy in patients. ABSTRACT: The voltage-gated sodium channel NaV 1.6 is the most abundantly expressed sodium channel isoform in the central nervous system. It plays a critical role in saltatory and continuous conduction. Although over 40 NaV 1.6 mutations have been linked to epileptic encephalopathy, only a few have been functionally analysed. In the present study, we characterized a NaV 1.6 mutation (R1617Q) identified in patients with epileptic encephalopathy and intellectual disability. R1617Q substitutes an arginine for a glutamine in the S4 segment of domain IV, which plays a major role in coupling the activation and inactivation of sodium channels. We used patch-clamp to show that R1617Q is a gain-of-function mutation. It is typified by slower inactivation kinetics and a loss of inactivation of voltage-dependence, which result in a 2.5-fold increase in the window current. In addition, sodium currents exhibited an enhanced rate of recovery from inactivation, most likely due to the destabilization of the inactivation state. The alterations in the fast inactivation caused a significant increase in the persistent sodium current. Overexpression of R1617Q in rat hippocampal neurons resulted in an increase in action potential firing activity that was inhibited by riluzole, consistent with the gain-of-function observed. We conclude that the R1617Q mutation causes neuronal hyperexcitability and may result in epileptic encephalopathy.


Assuntos
Epilepsia , Canal de Sódio Disparado por Voltagem NAV1.6 , Potenciais de Ação , Animais , Epilepsia/tratamento farmacológico , Epilepsia/genética , Humanos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Neurônios , Ratos
9.
Neurobiol Dis ; 160: 105532, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34655747

RESUMO

Myotonic dystrophy type 1 (DM1) is a multisystemic and heterogeneous disorder caused by the expansion of CTG repeats in the 3' UTR of the myotonic dystrophy protein kinase (DMPK) gene. There is a congenital form (CDM1) of the disease characterized by severe hypotonia, respiratory insufficiency as well as developmental delays and intellectual disabilities. CDM1 infants manifest important brain structure abnormalities present from birth while, in contrast, older patients with adult-onset DM1 often present neurodegenerative features and milder progressive cognitive deficits. Promising therapies targeting central molecular mechanisms contributing to the symptoms of adult-onset DM1 are currently in development, but their relevance for treating cognitive impairment in CDM1, which seems to be a partially distinct neurodevelopmental disorder, remain to be elucidated. Here, we provide an update on the clinical presentation of CDM1 and review recent in vitro and in vivo models that have provided meaningful insights on its consequences in development, with a particular focus on the brain. We discuss how enhanced toxic gain-of-function of the mutated DMPK transcripts with larger CUG repeats and the resulting dysregulation of RNA-binding proteins may affect the developing cortex in utero. Because the methylation of CpG islets flanking the trinucleotide repeats has emerged as a strong biomarker of CDM1, we highlight the need to investigate the tissue-specific impacts of these chromatin modifications in the brain. Finally, we outline promising potential therapeutic treatments for CDM1 and propose future in vitro and in vivo models with great potential to shed light on this disease.


Assuntos
Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Distrofia Miotônica/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Humanos , Distrofia Miotônica/diagnóstico por imagem , Distrofia Miotônica/genética
10.
Can J Physiol Pharmacol ; 99(11): 1128-1136, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34546143

RESUMO

The epidemiological outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), alias COVID-19, began in Wuhan, Hubei, China, in late December and eventually turned into a pandemic that has led to over 3.71 million deaths and over 173 million infected cases worldwide. In addition to respiratory manifestations, COVID-19 patients with neurological and myocardial dysfunctions exhibit a higher risk of in-hospital mortality. The immune function tends to be affected by cardiovascular risk factors and is thus indirectly related to the prognosis of COVID-19 patients. Many neurological symptoms and manifestations have been reported in COVID-19 patients; however, detailed descriptions on the prevalence and characteristic features of these symptoms are restricted due to insufficient data. It is thus advisable for clinicians to be vigilant for both cardiovascular and neurological manifestations to detect them at an early stage to avoid inappropriate management of COVID-19 and to address the manifestations adequately. Patients with severe COVID-19 are notably more susceptible to developing cardiovascular and neurological complications than non-severe COVID-19 patients. This review focuses on the consequential outcomes of COVID-19 on cardiovascular and neuronal functions, including other influencing factors.


Assuntos
Coração/virologia , Neurônios , SARS-CoV-2 , Humanos , Pessoa de Meia-Idade
11.
Biochem Biophys Res Commun ; 516(1): 222-228, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31208718

RESUMO

Human induced pluripotent stem cells (hiPSCs) are a valuable tool for investigating complex cellular and molecular events that occur in several human diseases. Importantly, the ability to differentiate hiPSCs into any human cell type provides a unique way for investigating disease mechanisms such as complex mental health diseases. The in vitro transformation of human lymphocytes into lymphoblasts (LCLs) using the Epstein-Barr virus (EBV) has been the main method for generating immortalized human cell lines for half a century. However, the derivation of iPSCs from LCLs has emerged as an alternative source from which these cell lines can be generated. We show that iPSCs derived from LCLs using the Sendai virus procedure can be successfully differentiated into cardiomyocytes, neurons, and myotubes that express neuron- and myocyte-specific markers. We further show that these cardiac and neuronal cells are functional and generate action potentials that are required for cell excitability. We conclude that the ability to differentiate LCLs into neurons and myocytes will increase the use of LCLs in the future as a potential source of cells for modelling a number of diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Mioblastos/citologia , Miócitos Cardíacos/citologia , Neurônios/citologia , Diferenciação Celular , Linhagem Celular , Técnicas de Reprogramação Celular , Humanos
12.
FASEB J ; 31(7): 3066-3071, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28356346

RESUMO

The decline of the western honeybee (Apis mellifera) has been reported to be due to parasitism by Varroa destructor mites and to colony collapse disorder in which these mites may be involved. In-hive chemicals such as τ-fluvalinate are being used to control Vdestructor populations. This approach may lead to the chronic exposure of bees to this liposoluble chemical, which tends to accumulate in hives. We cloned a variant of the V. destructor voltage-dependent sodium (VdNaV1) channel and studied its biophysical characteristics and sensitivity to τ-fluvalinate using the Xenopus oocyte expression system and the 2-microelectrode voltage-clamp technique. We compared the affinity of VdNaV1 for τ-fluvalinate with the honeybee voltage-dependent sodium ortholog. Our results showed that the honeybee sodium channel is more sensitive to τ-fluvalinate than the V. destructor channel, suggesting that care must be taken when treating hives with this chemical.-Gosselin-Badaroudine, P., Chahine, M. Biophysical characterization of the Varroa destructor NaV1 sodium channel and its affinity for τ-fluvalinate insecticide.


Assuntos
Proteínas de Artrópodes/metabolismo , Inseticidas/farmacologia , Nitrilas/farmacologia , Piretrinas/farmacologia , Canais de Sódio/metabolismo , Varroidae/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/genética , Abelhas/parasitologia , Clonagem Molecular , Regulação da Expressão Gênica/fisiologia , Inseticidas/química , Nitrilas/química , Oócitos , Variantes Farmacogenômicos , Piretrinas/química , Xenopus
13.
Handb Exp Pharmacol ; 246: 161-184, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29032483

RESUMO

In the heart, voltage-gated sodium (Nav) channel (Nav1.5) is defined by its pore-forming α-subunit and its auxiliary ß-subunits, both of which are important for its critical contribution to the initiation and maintenance of the cardiac action potential (AP) that underlie normal heart rhythm. The physiological relevance of Nav1.5 is further marked by the fact that inherited or congenital mutations in Nav1.5 channel gene SCN5A lead to altered functional expression (including expression, trafficking, and current density), and are generally manifested in the form of distinct cardiac arrhythmic events, epilepsy, neuropathic pain, migraine, and neuromuscular disorders. However, despite significant advances in defining the pathophysiology of Nav1.5, the molecular mechanisms that underlie its regulation and contribution to cardiac disorders are poorly understood. It is rapidly becoming evident that the functional expression (localization, trafficking and gating) of Nav1.5 may be under modulation by post-translational modifications that are associated with phosphorylation. We review here the molecular basis of cardiac Na channel regulation by kinases (PKA and PKC) and the resulting functional consequences. Specifically, we discuss: (1) recent literature on the structural, molecular, and functional properties of cardiac Nav1.5 channels; (2) how these properties may be altered by phosphorylation in disease states underlain by congenital mutations in Nav1.5 channel and/or subunits such as long QT and Brugada syndromes. Our expectation is that understanding the roles of these distinct and complex phosphorylation processes on the functional expression of Nav1.5 is likely to provide crucial mechanistic insights into Na channel associated arrhythmogenic events and will facilitate the development of novel therapeutic strategies.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/fisiologia , Proteína Quinase C/fisiologia , Animais , Humanos , Canal de Sódio Disparado por Voltagem NAV1.5/química , Fosforilação
14.
Can J Physiol Pharmacol ; 95(10): 1108-1116, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28350968

RESUMO

Chronic diseases are the primary cause of mortality worldwide, accounting for 67% of deaths. One of the major challenges in developing new treatments is the lack of understanding of the exact underlying biological and molecular mechanisms. Chronic cardiovascular diseases are the single most common cause of death worldwide, and sudden deaths due to cardiac arrhythmias account for approximately 50% of all such cases. Traditional genetic screening for genes involved in cardiac disorders is labourious and frequently fails to detect the mutation that explains or causes the disorder. However, when mutations are identified, human induced pluripotent stem cells (hiPSCs) derived from affected patients make it possible to address fundamental research questions directly relevant to human health. As such, hiPSC technology has recently been used to model human diseases and patient-specific hiPSC-derived cardiomyocytes (hiPSC-CMs) thus offer a unique opportunity to investigate potential disease-causing genetic variants in their natural environment. The purpose of this review is to present the current state of knowledge regarding hiPSC-CMs, including their potential, limitations, and challenges and to discuss future prospects.


Assuntos
Doenças Cardiovasculares/metabolismo , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/fisiopatologia , Técnicas de Cultura de Células , Predisposição Genética para Doença , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Mutação , Miócitos Cardíacos/efeitos dos fármacos , Fenótipo
15.
Q Rev Biophys ; 47(4): 364-88, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25382261

RESUMO

The voltage sensitive domain (VSD) is a pivotal structure of voltage-gated ion channels (VGICs) and plays an essential role in the generation of electrochemical signals by neurons, striated muscle cells, and endocrine cells. The VSD is not unique to VGICs. Recent studies have shown that a VSD regulates a phosphatase. Similarly, Hv1, a voltage-sensitive protein that lacks an apparent pore domain, is a self-contained voltage sensor that operates as an H⁺ channel. VSDs are formed by four transmembrane helices (S1-S4). The S4 helix is positively charged due to the presence of arginine and lysine residues. It is surrounded by two water crevices that extend into the membrane from both the extracellular and intracellular milieus. A hydrophobic septum disrupts communication between these water crevices thus preventing the permeation of ions. The septum is maintained by interactions between the charged residues of the S4 segment and the gating charge transfer center. Mutating the charged residue of the S4 segment allows the water crevices to communicate and generate gating pore or omega pore. Gating pore currents have been reported to underlie several neuronal and striated muscle channelopathies. Depending on which charged residue on the S4 segment is mutated, gating pores are permeant either at depolarized or hyperpolarized voltages. Gating pores are cation selective and seem to converge toward Eisenmann's first or second selectivity sequences. Most gating pores are blocked by guanidine derivatives as well as trivalent and quadrivalent cations. Gating pores can be used to study the movement of the voltage sensor and could serve as targets for novel small therapeutic molecules.


Assuntos
Fenômenos Biofísicos , Ativação do Canal Iônico , Canais Iônicos/química , Canais Iônicos/metabolismo , Biologia Molecular/métodos , Sequência de Aminoácidos , Animais , Humanos , Canais Iônicos/antagonistas & inibidores , Dados de Sequência Molecular , Porosidade
16.
J Physiol ; 594(21): 6175-6187, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27296897

RESUMO

KEY POINTS: Channelopathies of autoimmune origin are novel and are associated with corrected QT (QTc) prolongation and complex ventricular arrhythmias. We have recently demonstrated that anti-SSA/Ro antibodies from patients with autoimmune diseases and with QTc prolongation on the ECG target the human ether-à-go-go-related gene (HERG) K+ channel by inhibiting the corresponding current, IKr , at the pore region. Immunization of guinea-pigs with a peptide (E-pore peptide) corresponding to the extracellular loop region connecting the S5 and S6 segments of the HERG channel induces high titres of antibodies that inhibit IKr , lengthen the action potential and cause QTc prolongation on the surface ECG. In addition, anti-SSA/Ro-positive sera from patients with connective tissue diseases showed high reactivity to the E-pore peptide. The translational impact is the development of a peptide-based approach for the diagnosis and treatment of autoimmune-associated long QT syndrome. ABSTRACT: We recently demonstrated that anti-SSA/52 kDa Ro antibodies (Abs) from patients with autoimmune diseases and corrected QT (QTc) prolongation directly target and inhibit the human ether-à-go-go-related gene (HERG) K+ channel at the extracellular pore (E-pore) region, where homology with SSA/52 kDa Ro antigen was demonstrated. We tested the hypothesis that immunization of guinea-pigs with a peptide corresponding to the E-pore region (E-pore peptide) will generate pathogenic inhibitory Abs and cause QTc prolongation. Guinea-pigs were immunized with a 31-amino-acid peptide corresponding to the E-pore region of HERG. On days 10-62 after immunization, ECGs were recorded and blood was sampled for the detection of E-pore peptide Abs. Serum samples from patients with autoimmune diseases were evaluated for reactivity to E-pore peptide by enzyme-linked immunosorbent assay (ELISA), and histology was performed on hearts using Masson's Trichrome. Inhibition of the HERG channel was assessed by electrophysiology and by computational modelling of the human ventricular action potential. The ELISA results revealed the presence of high titres of E-pore peptide Abs and significant QTc prolongation after immunization. High reactivity to E-pore peptide was found using anti-SSA/Ro Ab-positive sera from patients with QTc prolongation. Histological data showed no evidence of fibrosis in immunized hearts. Simulations of simultaneous inhibition of repolarizing currents by anti-SSA/Ro Ab-positive sera showed the predominance of the HERG channel in controlling action potential duration and the QT interval. These results are the first to demonstrate that inhibitory Abs to the HERG E-pore region induce QTc prolongation in immunized guinea-pigs by targeting the HERG channel independently from fibrosis. The reactivity of anti-SSA/Ro Ab-positive sera from patients with connective tissue diseases with the E-pore peptide opens novel pharmacotherapeutic avenues in the diagnosis and management of autoimmune-associated QTc prolongation.


Assuntos
Autoimunidade , Canais de Potássio Éter-A-Go-Go/imunologia , Síndrome do QT Longo/imunologia , Animais , Anticorpos/imunologia , Células Cultivadas , Canais de Potássio Éter-A-Go-Go/química , Cobaias , Células HEK293 , Humanos , Fragmentos de Peptídeos/imunologia
17.
Circulation ; 132(4): 230-40, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25995318

RESUMO

BACKGROUND: Emerging clinical evidence demonstrates high prevalence of QTc prolongation and complex ventricular arrhythmias in patients with anti-Ro antibody (anti-Ro Ab)-positive autoimmune diseases. We tested the hypothesis that anti-Ro Abs target the HERG (human ether-a-go-go-related gene) K(+) channel, which conducts the rapidly activating delayed K(+) current, IKr, thereby causing delayed repolarization seen as QT interval prolongation on the ECG. METHODS AND RESULTS: Anti-Ro Ab-positive sera, purified IgG, and affinity-purified anti-52kDa Ro Abs from patients with autoimmune diseases and QTc prolongation were tested on IKr using HEK293 cells expressing HERG channel and native cardiac myocytes. Electrophysiological and biochemical data demonstrate that anti-Ro Abs inhibit IKr to prolong action potential duration by directly binding to the HERG channel protein. The 52-kDa Ro antigen-immunized guinea pigs showed QTc prolongation on ECG after developing high titers of anti-Ro Abs, which inhibited native IKr and cross-reacted with guinea pig ERG channel. CONCLUSIONS: The data establish that anti-Ro Abs from patients with autoimmune diseases inhibit IKr by cross-reacting with the HERG channel likely at the pore region where homology between anti-52-kDa Ro antigen and HERG channel is present. The animal model of autoimmune-associated QTc prolongation is the first to provide strong evidence for a pathogenic role of anti-Ro Abs in the development of QTc prolongation. It is proposed that adult patients with anti-Ro Abs may benefit from routine ECG screening and that those with QTc prolongation should receive counseling about drugs that may increase the risk for life-threatening arrhythmias.


Assuntos
Anticorpos Anti-Idiotípicos/fisiologia , Doenças Autoimunes/etiologia , Doenças Autoimunes/fisiopatologia , Síndrome do QT Longo/etiologia , Síndrome do QT Longo/fisiopatologia , Ribonucleoproteínas/imunologia , Adulto , Idoso , Animais , Anticorpos Anti-Idiotípicos/imunologia , Anticorpos Anti-Idiotípicos/farmacologia , Arritmias Cardíacas/epidemiologia , Arritmias Cardíacas/fisiopatologia , Doenças Autoimunes/imunologia , Células Cultivadas , Modelos Animais de Doenças , Canal de Potássio ERG1 , Eletrocardiografia , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/metabolismo , Feminino , Cobaias , Células HEK293 , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Síndrome do QT Longo/imunologia , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fatores de Risco
18.
Ann Noninvasive Electrocardiol ; 20(1): 28-36, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24943134

RESUMO

BACKGROUND: Myotonic dystrophy type 1 (DM1) generates missplicing of the SCN5A gene, encoding the cardiac sodium channel (Nav 1.5). Brugada syndrome, which partly results from Nav 1.5 dysfunction and causes increased VF occurrence, can be unmasked by ajmaline. We aimed to investigate the response to ajmaline challenge in DM1 patients and its potential impact on their sudden cardiac death risk stratification. METHODS: Among 36 adult DM1 patients referred to our institution, electrophysiological study and ajmaline challenge were performed in 12 patients fulfilling the following criteria: (1) PR interval >200 ms or QRS duration >100 ms; (2) absence of complete left bundle branch block; (3) absence of permanent ventricular pacing; (4) absence of implantable cardioverter-defibrillator (ICD); (5) preserved left-ventricular ejection fraction >50%; and (6) absence of severe muscular impairment. Of note, DM1 patients with ajmaline-induced Brugada pattern (BrP) were screened for SCN5A. RESULTS: In all the 12 patients studied, the HV interval was <70 ms. A BrP was unmasked in three patients but none carried an SCN5A mutation. Ajmaline-induced sustained ventricular tachycardia occurred in one patient with BrP, who finally received an ICD. The other patients did not present any cardiac event during the entire follow-up (15 ± 4 months). CONCLUSION: Our study is the first to describe a high prevalence of ajmaline-induced BrP in DM1 patients. The indications, the safety, and the implications of ajmaline challenge in this particular setting need to be determined by larger prospective studies.


Assuntos
Ajmalina/administração & dosagem , Antiarrítmicos/administração & dosagem , Síndrome de Brugada/complicações , Síndrome de Brugada/diagnóstico , Eletrocardiografia , Distrofia Miotônica/complicações , Adolescente , Adulto , Idoso , Síndrome de Brugada/fisiopatologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
19.
Proc Natl Acad Sci U S A ; 109(47): 19250-5, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23134726

RESUMO

Mammalian voltage-gated sodium channels are composed of four homologous voltage sensor domains (VSDs; DI, DII, DIII, and DIV) in which their S4 segments contain a variable number of positively charged residues. We used single histidine (H) substitutions of these charged residues in the Na(v)1.4 channel to probe the positions of the S4 segments at hyperpolarized potentials. The substitutions led to the formation of gating pores that were detected as proton leak currents through the VSDs. The leak currents indicated that the mutated residues are accessible from both sides of the membrane. Leak currents of different magnitudes appeared in the DI/R1H, DII/R1H, and DIII/R2H mutants, suggesting that the resting state position of S4 varies depending on the domain. Here, DI/R1H indicates the first arginine R1, in domain DI, has been mutated to histidine. The single R1H, R2H, and R3H mutations in DIV did not produce appreciable proton currents, indicating that the VSDs had different topologies. A structural model of the resting states of the four VSDs of Na(v)1.4 relaxed in their membrane/solution environment using molecular dynamics simulations is proposed based on the recent Na(v)Ab sodium channel X-ray structure. The model shows that the hydrophobic septa that isolate the intracellular and the extracellular media within the DI, DII, and DIII VSDs are ∼2 Šlong, similar to those of K(v) channels. However, the septum of DIV is longer, which prevents water molecules from hydrating the center of the VSD, thus breaking the proton conduction pathway. This structural model rationalizes the activation sequence of the different VSDs of the Na(v)1.4 channel.


Assuntos
Condutividade Elétrica , Ativação do Canal Iônico , Canal de Sódio Disparado por Voltagem NAV1.4/química , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Oócitos , Porosidade , Estrutura Terciária de Proteína , Prótons , Alinhamento de Sequência , Xenopus
20.
Mol Pharmacol ; 86(4): 378-89, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25028482

RESUMO

The voltage-gated Nav1.5 channel is essential for the propagation of action potentials in the heart. Malfunctions of this channel are known to cause hereditary diseases. It is a prime target for class 1 antiarrhythmic drugs and a number of antidepressants. Our study investigated the Nav1.5 blocking properties of fluoxetine, a selective serotonin reuptake inhibitor. Nav1.5 channels were expressed in HEK-293 cells, and Na(+) currents were recorded using the patch-clamp technique. Dose-response curves of racemic fluoxetine (IC50 = 39 µM) and its optical isomers had a similar IC50 [40 and 47 µM for the (+) and (-) isomers, respectively]. Norfluoxetine, a fluoxetine metabolite, had a higher affinity than fluoxetine, with an IC50 of 29 µM. Fluoxetine inhibited currents in a frequency-dependent manner, shifted steady-state inactivation to more hyperpolarized potentials, and slowed the recovery of Nav1.5 from inactivation. Mutating a phenylalanine (F1760) and a tyrosine (Y1767) in the S6 segment of domain (D) IV (DIVS6) significantly reduced the affinity of fluoxetine and its frequency-dependent inhibition. We used a noninactivating Nav1.5 mutant to show that fluoxetine displays open-channel block behavior. The molecular model of fluoxetine in Nav1.5 was in agreement with mutational experiments in which F1760 and Y1767 were found to be the key residues in binding fluoxetine. We concluded that fluoxetine blocks Nav1.5 by binding to the class 1 antiarrhythmic site. The blocking of cardiac Na(+) channels should be taken into consideration when prescribing fluoxetine alone or in association with other drugs that may be cardiotoxic or for patients with conduction disorders.


Assuntos
Fluoxetina/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Sequência de Aminoácidos , Antiarrítmicos/farmacologia , Sítios de Ligação , Fluoxetina/efeitos adversos , Fluoxetina/farmacocinética , Células HEK293 , Humanos , Concentração Inibidora 50 , Ativação do Canal Iônico , Dados de Sequência Molecular , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/química , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Ligação Proteica , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Inibidores Seletivos de Recaptação de Serotonina/farmacocinética , Bloqueadores dos Canais de Sódio/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA