Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biochem ; 118(4): 726-738, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27563734

RESUMO

Loxoscelism refers to the clinical symptoms that develop after brown spider bites. Brown spider venoms contain several phospholipase-D isoforms, which are the main toxins responsible for both the cutaneous and systemic effects of loxoscelism. Understanding of the phospholipase-D catalytic mechanism is crucial for the development of specific treatment that could reverse the toxic effects caused by the spider bite. Based on enzymatic, biological, structural, and thermodynamic tests, we show some features suitable for designing drugs against loxoscelism. Firstly, through molecular docking and molecular dynamics predictions, we found three different molecules (Suramin, Vu0155056, and Vu0359595) that were able to bind the enzyme's catalytic site and interact with catalytically important residues (His12 or His47) and with the Mg2+ co-factor. The binding promoted a decrease in the recombinant brown spider venom phospholipase-D (LiRecDT1) enzymatic activity. Furthermore, the presence of the inhibitors reduced the hemolytic, dermonecrotic, and inflammatory activities of the venom toxin in biological assays. Altogether, these results indicate the mode of action of three different LiRecDT1 inhibitors, which were able to prevent the venom toxic effects. This strengthen the idea of the importance of designing a specific drug to treat the serious clinical symptoms caused by the brown spider bite, a public health problem in several parts of the world, and until now without specific treatment. J. Cell. Biochem. 118: 726-738, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Artrópodes/antagonistas & inibidores , Aranha Marrom Reclusa/enzimologia , Desenho de Fármacos , Fosfolipase D/antagonistas & inibidores , Venenos de Aranha/antagonistas & inibidores , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Benzimidazóis/farmacologia , Aranha Marrom Reclusa/genética , Aranha Marrom Reclusa/patogenicidade , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Hemólise/efeitos dos fármacos , Humanos , Cinética , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Necrose , Fosfolipase D/química , Fosfolipase D/genética , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Piperidinas/farmacologia , Coelhos , Proteínas Recombinantes/genética , Pele/efeitos dos fármacos , Pele/patologia , Picada de Aranha/tratamento farmacológico , Picada de Aranha/enzimologia , Venenos de Aranha/química , Venenos de Aranha/genética , Suramina/farmacologia
2.
J Cell Biochem ; 114(11): 2479-92, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23733617

RESUMO

UNLABELLED: Brown spider (Loxosceles genus) bites have been reported worldwide. The venom contains a complex composition of several toxins, including phospholipases-D. Native or recombinant phospholipase-D toxins induce cutaneous and systemic loxoscelism, particularly necrotic lesions, inflammatory response, renal failure, and hematological disturbances. Herein, we describe the cloning, heterologous expression and purification of a novel phospholipase-D toxin, LiRecDT7 in reference to six other previously described in phospholipase-D toxin family. The complete cDNA sequence of this novel brown spider phospholipase-D isoform was obtained and the calculated molecular mass of the predicted mature protein is 34.4 kDa. Similarity analyses revealed that LiRecDT7 is homologous to the other dermonecrotic toxin family members particularly to LiRecDT6, sharing 71% sequence identity. LiRecDT7 possesses the conserved amino acid residues involved in catalysis except for a conservative mutation (D233E) in the catalytic site. Purified LiRecDT7 was detected as a soluble 36 kDa protein using anti-whole venom and anti-LiRecDT1 sera, indicating immunological cross-reactivity and evidencing sequence-epitopes identities similar to those of other phospholipase-D family members. Also, LiRecDT7 exhibits sphingomyelinase activity in a concentration dependent-manner and induces experimental skin lesions with swelling, erythema and dermonecrosis. In addition, LiRecDT7 induced a massive inflammatory response in rabbit skin dermis, which is a hallmark of brown spider venom phospholipase-D toxins. Moreover, LiRecDT7 induced in vitro hemolysis in human erythrocytes and increased blood vessel permeability. These features suggest that this novel member of the brown spider venom phospholipase-D family, which naturally contains a mutation (D233E) in the catalytic site, could be useful for future structural and functional studies concerning loxoscelism and lipid biochemistry. HIGHLIGHTS: 1- Novel brown spider phospholipase-D recombinant toxin contains a conservative mutation (D233E) on the catalytic site. 2-LiRecDT7 shares high identity level with isoforms of Loxosceles genus. 3-LiRecDT7 is a recombinant protein immunodetected by specific antibodies to native and recombinant phospholipase-D toxins. 4-LiRecDT7 shows sphingomyelinase-D activity in a concentration-dependent manner, but less intense than other isoforms. 5-LiRecDT7 induces dermonecrosis and inflammatory response in rabbit skin. 6-LiRecDT7 increases vascular permeability in mice. 7-LiRecDT7 triggers direct complement-independent hemolysis in erythrocytes.


Assuntos
Fosfolipase D/química , Isoformas de Proteínas/química , Animais , Domínio Catalítico , Biologia Computacional , Hemólise/efeitos dos fármacos , Humanos , Camundongos , Dados de Sequência Molecular , Mutação/genética , Fosfolipase D/genética , Fosfolipase D/farmacologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/farmacologia , Coelhos
3.
Toxins (Basel) ; 15(2)2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36828423

RESUMO

Brown spider envenomation results in dermonecrosis, characterized by an intense inflammatory reaction. The principal toxins of brown spider venoms are phospholipase-D isoforms, which interact with different cellular membrane components, degrade phospholipids, and generate bioactive mediators leading to harmful effects. The Loxosceles intermedia phospholipase D, LiRecDT1, possesses a loop that modulates the accessibility to the active site and plays a crucial role in substrate. In vitro and in silico analyses were performed to determine aspects of this enzyme's substrate preference. Sphingomyelin d18:1/6:0 was the preferred substrate of LiRecDT1 compared to other Sphingomyelins. Lysophosphatidylcholine 16:0/0:0 was preferred among other lysophosphatidylcholines, but much less than Sphingomyelin d18:1/6:0. In contrast, phosphatidylcholine d18:1/16:0 was not cleaved. Thus, the number of carbon atoms in the substrate plays a vital role in determining the optimal activity of this phospholipase-D. The presence of an amide group at C2 plays a key role in recognition and activity. In silico analyses indicated that a subsite containing the aromatic residues Y228 and W230 appears essential for choline recognition by cation-π interactions. These findings may help to explain why different cells, with different phospholipid fatty acid compositions exhibit distinct susceptibilities to brown spider venoms.


Assuntos
Fosfolipase D , Venenos de Aranha , Aranhas , Animais , Esfingomielinas/metabolismo , Diester Fosfórico Hidrolases/química , Fosfolipase D/metabolismo , Venenos de Aranha/química , Fosfolipídeos/metabolismo , Lisofosfatidilcolinas , Aranhas/metabolismo
4.
Sci Rep ; 13(1): 22412, 2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104152

RESUMO

In silico interrogation of glioblastoma (GBM) in The Cancer Genome Atlas (TCGA) revealed upregulation of GNA12 (Gα12), encoding the alpha subunit of the heterotrimeric G-protein G12, concomitant with overexpression of multiple G-protein coupled receptors (GPCRs) that signal through Gα12. Glioma stem cell lines from patient-derived xenografts also showed elevated levels of Gα12. Knockdown (KD) of Gα12 was carried out in two different human GBM stem cell (GSC) lines. Tumors generated in vivo by orthotopic injection of Gα12KD GSC cells showed reduced invasiveness, without apparent changes in tumor size or survival relative to control GSC tumor-bearing mice. Transcriptional profiling of GSC-23 cell tumors revealed significant differences between WT and Gα12KD tumors including reduced expression of genes associated with the extracellular matrix, as well as decreased expression of stem cell genes and increased expression of several proneural genes. Thrombospondin-1 (THBS1), one of the genes most repressed by Gα12 knockdown, was shown to be required for Gα12-mediated cell migration in vitro and for in vivo tumor invasion. Chemogenetic activation of GSC-23 cells harboring a Gα12-coupled DREADD also increased THBS1 expression and in vitro invasion. Collectively, our findings implicate Gα12 signaling in regulation of transcriptional reprogramming that promotes invasiveness, highlighting this as a potential signaling node for therapeutic intervention.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Glioblastoma/genética , Glioblastoma/patologia , Transdução de Sinais , Processos Neoplásicos , Regulação para Cima , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proliferação de Células
5.
Biochem Biophys Res Commun ; 409(4): 622-7, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21616057

RESUMO

Phospholipases D (PLDs) are principally responsible for the local and systemic effects of Loxosceles envenomation including dermonecrosis and hemolysis. Despite their clinical relevance in loxoscelism, to date, only the SMase I from Loxosceles laeta, a class I member, has been structurally characterized. The crystal structure of a class II member from Loxosceles intermedia venom has been determined at 1.7Å resolution. Structural comparison to the class I member showed that the presence of an additional disulphide bridge which links the catalytic loop to the flexible loop significantly changes the volume and shape of the catalytic cleft. An examination of the crystal structures of PLD homologues in the presence of low molecular weight compounds at their active sites suggests the existence of a ligand-dependent rotamer conformation of the highly conserved residue Trp230 (equivalent to Trp192 in the glycerophosphodiester phosphodiesterase from Thermus thermophofilus, PDB code: 1VD6) indicating its role in substrate binding in both enzymes. Sequence and structural analyses suggest that the reduced sphingomyelinase activity observed in some class IIb PLDs is probably due to point mutations which lead to a different substrate preference.


Assuntos
Fosfolipase D/química , Fosfolipase D/classificação , Venenos de Aranha/enzimologia , Aranhas/enzimologia , Sequência de Aminoácidos , Animais , Domínio Catalítico , Cristalografia por Raios X , Cisteína/química , Dados de Sequência Molecular
6.
Artigo em Inglês | MEDLINE | ID: mdl-21301094

RESUMO

Phospholipases D are the major dermonecrotic component of Loxosceles venom and catalyze the hydrolysis of phospholipids, resulting in the formation of lipid mediators such as ceramide-1-phosphate and lysophosphatidic acid which can induce pathological and biological responses. Phospholipases D can be classified into two classes depending on their catalytic efficiency and the presence of an additional disulfide bridge. In this work, both wild-type and H12A-mutant forms of the class II phospholipase D from L. intermedia venom were crystallized. Wild-type and H12A-mutant crystals were grown under very similar conditions using PEG 200 as a precipitant and belonged to space group P12(1)1, with unit-cell parameters a = 50.1, b = 49.5, c = 56.5 Å, ß = 105.9°. Wild-type and H12A-mutant crystals diffracted to maximum resolutions of 1.95 and 1.60 Å, respectively.


Assuntos
Fosfolipase D/química , Fosfolipase D/classificação , Venenos de Aranha/enzimologia , Aranhas/enzimologia , Sequência de Aminoácidos , Animais , Cristalização , Cristalografia por Raios X/métodos , Difusão , Dissulfetos/química , Escherichia coli/genética , Histidina/química , Temperatura Alta , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Peso Molecular , Mutação , Fosfolipase D/genética , Fosfolipase D/isolamento & purificação , Diester Fosfórico Hidrolases , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/classificação , Proteínas Recombinantes de Fusão/isolamento & purificação , Homologia de Sequência de Aminoácidos , Transformação Bacteriana , Difração de Raios X
7.
Biochim Biophys Acta ; 1780(2): 167-78, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18082635

RESUMO

Brown spider bites are associated with lesions including dermonecrosis, gravitational spreading and a massive inflammatory response, along with systemic problems that may include hematological disturbances and renal failure. The mechanisms by which the venom exerts its noxious effects are currently under investigation. It is known that the venom contains a major toxin (dermonecrotic toxin, biochemically a phospholipase D) that can experimentally induce dermonecrosis, inflammatory response, animal mortality and platelet aggregation. Herein, we describe cloning, heterologous expression, purification and functionality of a novel isoform of the 33 kDa dermonecrotic toxin. Circular dichroism analysis evidenced correct folding for the toxin. The recombinant toxin was recognized by whole venom serum antibodies and by a specific antibody to a previously described dermonecrotic toxin. The identified toxin was found to display phospholipase activity and dermonecrotic properties. Additionally, the toxin caused a massive inflammatory response in rabbit skin dermis, evoked platelet aggregation, increased vascular permeability, caused edema and death in mice. These characteristics in combination with functional studies for other dermonecrotic toxins illustrate that a family of dermonecrotic toxins exists, and includes a novel member with high activity that may be useful for future structural and functional studies.


Assuntos
Derme/efeitos dos fármacos , Fosfolipase D/química , Fosfolipase D/toxicidade , Venenos de Aranha/química , Venenos de Aranha/enzimologia , Venenos de Aranha/toxicidade , Sequência de Aminoácidos , Animais , Permeabilidade Capilar/efeitos dos fármacos , Clonagem Molecular , DNA Complementar/genética , Derme/patologia , Edema/induzido quimicamente , Camundongos , Dados de Sequência Molecular , Necrose/induzido quimicamente , Fosfolipase D/genética , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/toxicidade , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/toxicidade , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/toxicidade , Venenos de Aranha/genética , Aranhas/enzimologia
8.
Toxicon ; 53(6): 660-71, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19673081

RESUMO

Bites by the brown spider (Loxosceles spp.) are an important health problem in South America, where three species predominate (Loxosceles laeta, Loxosceles gaucho, Loxosceles intermedia). Brown spider bites (loxoscelism) induce a block of cutaneous necrosis and, less commonly, may cause fatal systemic poisoning. A variety of controversial protocols are used to treat loxoscelism, while treatment with antivenin is the only venom specific treatment. Here we studied the action of the venom as well as the response to the antivenin for Loxosceles through an experimental study that simulates bites of L. intermedia (bites of this species are the most common in Brazil). Beneficial effects are known for antivenin applied quickly (within 4 h) after envenomation. Here we wished to examine the temporal development of the brown spider bite as well as the temporal patterns of the action of the antivenin to determine the time limits for beneficial use of the antivenin after envenomation. This information is important since most patients only appear for treatment several hours after being bitten. New Zealand rabbits were experimentally exposed to the venom from brown spiders by the injection of venom from L. intermedia (2x minimum necrotic dose), followed at regular time intervals by antivenin. The use of the loxoscelic antivenin--CPPI (4 mL per animal)--minimized the effects of envenomation when applied for up to 12 h after the injection of the venom, as evaluated by cutaneous (erythrema, edema, ecchymosis and necrosis) and systemic (blood cell and platelet counts, hematimetrics and fibrinogen dosage) criteria. Also, antivenin reduced the size of the necrotic area when applied up to 48 h after envenomation. Thus, therapy with loxoscelic antivenin, CPPI, may provide beneficial results by interfering with envenomation well after the bite occurred and therefore may become an important tool for medical treatment of brown spider bites.


Assuntos
Antivenenos/administração & dosagem , Diester Fosfórico Hidrolases/toxicidade , Picada de Aranha/terapia , Venenos de Aranha/toxicidade , Animais , Contagem de Eritrócitos , Fibrinogênio/análise , Contagem de Leucócitos , Masculino , Contagem de Plaquetas , Coelhos , Pele/patologia , Picada de Aranha/patologia
9.
Toxins (Basel) ; 11(6)2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248109

RESUMO

Brown spider envenomation results in dermonecrosis with gravitational spreading characterized by a marked inflammatory reaction and with lower prevalence of systemic manifestations such as renal failure and hematological disturbances. Several toxins make up the venom of these species, and they are mainly peptides and proteins ranging from 5-40 kDa. The venoms have three major families of toxins: phospholipases-D, astacin-like metalloproteases, and the inhibitor cystine knot (ICK) peptides. Serine proteases, serpins, hyaluronidases, venom allergens, and a translationally controlled tumor protein (TCTP) are also present. Toxins hold essential biological properties that enable interactions with a range of distinct molecular targets. Therefore, the application of toxins as research tools and clinical products motivates repurposing their uses of interest. This review aims to discuss possibilities for brown spider venom toxins as putative models for designing molecules likely for therapeutics based on the status quo of brown spider venoms. Herein, we explore new possibilities for the venom components in the context of their biochemical and biological features, likewise their cellular targets, three-dimensional structures, and mechanisms of action.


Assuntos
Diester Fosfórico Hidrolases , Venenos de Aranha , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Humanos , Imunoterapia , Inseticidas/farmacologia , Fármacos Neuroprotetores/farmacologia , Peptídeos/farmacologia , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/farmacologia , Proteínas Recombinantes/farmacologia , Inibidores de Serina Proteinase/farmacologia , Venenos de Aranha/química , Venenos de Aranha/farmacologia , Proteína Tumoral 1 Controlada por Tradução
10.
Biotechnol Adv ; 26(3): 210-8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18207690

RESUMO

Loxoscelism (the term used to define accidents by the bite of brown spiders) has been reported worldwide. Clinical manifestations following brown spider bites are frequently associated with skin degeneration, a massive inflammatory response at the injured region, intravascular hemolysis, platelet aggregation causing thrombocytopenia and renal disturbances. The mechanisms by which the venom exerts its noxious effects are currently under investigation. The whole venom is a complex mixture of toxins enriched with low molecular mass proteins in the range of 5-40 kDa. Toxins including alkaline phosphatase, hyaluronidase, metalloproteases (astacin-like proteases), low molecular mass (5.6-7.9 kDa) insecticidal peptides and phospholipases-D (dermonecrotic toxins) have been identified in the venom. The purpose of the present review is to describe biotechnological applications of whole venom or some toxins, with especial emphasis upon molecular biology findings obtained in the last years.


Assuntos
Biotecnologia , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/toxicidade , Venenos de Aranha/química , Venenos de Aranha/toxicidade , Aranhas/química , Aranhas/classificação , Animais , Previsões , Humanos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade , Picada de Aranha/patologia , Picada de Aranha/terapia , Venenos de Aranha/genética , Venenos de Aranha/metabolismo
11.
Toxicon ; 52(6): 695-704, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18765244

RESUMO

Brown spider bites cause dermonecrotic lesions and systemic manifestations known as loxoscelism. The Loxosceles intermedia venom contains many active proteins, as phospholipase D. There are reports of increased levels of hepatic transaminases in humans with loxoscelism, but detailed studies about the action of the Loxosceles intermedia venom on the liver functions are lacking. The aim of this study was to investigate the effects of the venom and the dermonecrotic recombinant toxin 1 (LiRecDT1) in the liver of Wistar rats injected subcutaneously with venom (80 microg) or toxin (80 microg). After 6 and 12h the liver immunofluorescence was positive for venom and toxin. Hepatocytes from the venom group were tumefacted and apoptotic. There was leucocyte infiltration in the portal region combined with a high degree of steatosis in 12h. In the toxin group the histological alterations were less severe. Plasma levels of alanine aminotransferase, aspartate aminotransferase and gamma-glutamyl-transferase were significantly elevated only in the venom group in 6h. Hepatic metabolism was modified: the venom, but not LiRecDT1, reduced gluconeogenesis and ureagenesis from alanine and glycogen accumulation. These results show that the venom is hepatotoxic and that the dermonecrotic toxin is only partly responsible.


Assuntos
Fígado/efeitos dos fármacos , Diester Fosfórico Hidrolases/toxicidade , Venenos de Aranha/toxicidade , Animais , Apoptose/efeitos dos fármacos , Enzimas/sangue , Fígado/patologia , Masculino , Plasma/química , Ratos , Ureia/sangue
12.
Oncogene ; 37(41): 5492-5507, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29887596

RESUMO

The role of YAP (Yes-associated protein 1) and MRTF-A (myocardin-related transcription factor A), two transcriptional co-activators regulated downstream of GPCRs (G protein-coupled receptors) and RhoA, in the growth of glioblastoma cells and in vivo glioblastoma multiforme (GBM) tumor development was explored using human glioblastoma cell lines and tumor-initiating cells derived from patient-derived xenografts (PDX). Knockdown of these co-activators in GSC-23 PDX cells using short hairpin RNA significantly attenuated in vitro self-renewal capability assessed by limiting dilution, oncogene expression, and neurosphere formation. Orthotopic xenografts of the MRTF-A and YAP knockdown PDX cells formed significantly smaller tumors and were of lower morbidity than wild-type cells. In vitro studies used PDX and 1321N1 glioblastoma cells to examine functional responses to sphingosine 1-phosphate (S1P), a GPCR agonist that activates RhoA signaling, demonstrated that YAP signaling was required for cell migration and invasion, whereas MRTF-A was required for cell adhesion; both YAP and MRTF-A were required for proliferation. Gene expression analysis by RNA-sequencing of S1P-treated MRTF-A or YAP knockout cells identified 44 genes that were induced through RhoA and highly dependent on YAP, MRTF-A, or both. Knockdown of F3 (tissue factor (TF)), a target gene regulated selectively through YAP, blocked cell invasion and migration, whereas knockdown of HBEGF (heparin-binding epidermal growth factor-like growth factor), a gene selectively induced through MRTF-A, prevented cell adhesion in response to S1P. Proliferation was sensitive to knockdown of target genes regulated through either or both YAP and MRTF-A. Expression of TF and HBEGF was also selectively decreased in tumors from PDX cells lacking YAP or MRTF-A, indicating that these transcriptional pathways are regulated in preclinical GBM models and suggesting that their activation through GPCRs and RhoA contributes to growth and maintenance of human GBM.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/patologia , Fosfoproteínas/genética , Transativadores/genética , Animais , Neoplasias Encefálicas/genética , Glioblastoma/genética , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Fatores de Transcrição , Proteínas de Sinalização YAP , Proteína rhoA de Ligação ao GTP/biossíntese , Proteína rhoA de Ligação ao GTP/genética
13.
Biochimie ; 89(3): 289-300, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17296256

RESUMO

Loxoscelism (the condition produced by the bite of brown spiders) has been reported worldwide, but especially in warmer regions. Clinical manifestations include skin necrosis with gravitational spreading while systemic loxoscelism may include renal failure, hemolysis and thrombocytopenia. The venom contains several toxins, of which the best biochemically and biologically studied is the dermonecrotic toxin, a phospholipase-D. Purified toxin induces cutaneous and systemic loxoscelism, especially necrotic lesions, hematological disturbances and renal failure. Herein, we describe cloning, heterologous expression and purification of two novel dermonecrotic toxins: LiRecDT4 and LiRecDT5. The recombinant proteins stably expressed in Escherichia coli cells were purified from culture supernatants in a single step using Ni(2+)-chelating chromatography producing soluble proteins of 34 kDa (LiRecDT4) and 37 kDa (LiRecDT5). Circular dichroism analysis evidenced correctly folding for toxins but differences in secondary structures. Both proteins were recognized by whole venom serum antibodies and by a specific antibody to dermonecrotic toxin. Also, recombinant toxins with phospholipase activity induced experimental skin lesions and caused a massive inflammatory response in rabbit skin dermis. Nevertheless, toxins displayed different effects upon platelet aggregation, increase in vascular permeability and not caused death in mice. These characteristics in combination with functional studies illustrates that a family of dermonecrotic toxins exists, and includes two novel members that are useful for future structural and functional studies. They will also be useful in biotechnological ends, for example, as inflammatory and platelet aggregating studies, as antigens for serum therapy source and for lipids biochemical research.


Assuntos
Venenos de Aranha/genética , Venenos de Aranha/metabolismo , Aranhas/genética , Toxinas Biológicas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Permeabilidade Capilar/efeitos dos fármacos , Dicroísmo Circular , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Eletroforese em Gel de Poliacrilamida , Camundongos , Dados de Sequência Molecular , Fosfolipases/genética , Fosfolipases/metabolismo , Filogenia , Agregação Plaquetária/efeitos dos fármacos , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Pele/efeitos dos fármacos , Pele/patologia , Aranhas/metabolismo , Toxinas Biológicas/metabolismo , Toxinas Biológicas/toxicidade
14.
Toxicon ; 49(6): 758-68, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17210169

RESUMO

In studying Loxosceles venom, we detected degradation of purified hyaluronic acid (HA) and hydrolysis of purified chondroitin sulphate (CS) while neither dermatan sulphate, heparin or heparan sulphate were affected. In addition, with HA-degrading kinetic assays, we show that a hydrolase enzyme was involved in the HA cleavage. By use of the Reissig colorimetric reaction, we found that venom hyaluronidase is an endo-beta-N-acetyl-d-hexosaminidase that generates terminal N-acetylglucosamine residues upon cleavage of HA. Zymogram analysis of L. intermedia venom showed HA lytic activities at 41 and 43kDa, and, when CS was used as a substrate, zymograph experiments resulted in 41 and 43kDa lytic zones. Thus, these results support the hypothesis that the same molecules are involved in cleaving HA and CS residues. Experiments to compare L. intermedia electrostimulated venom and venom gland extract also demonstrated very similar HA lytic activity, suggesting again that hyaluronidases are self-components of Loxosceles spider venom instead of oral egesta contamination. HA degradation as a function of pH in these hydrolase enzymes showed no apparent activities at low or high pH, with optimal activity at 6.0-8.0 pH. Finally, we confirmed the cleaving action of the venom hyaluronidases on HA in the extracellular matrix of the dermis of rabbit by fluorescence reaction to HA and confocal microscope analysis. Thus, hyaluronidases type hydrolases endo-beta-N-acetyl-d-hexosaminidase are implicated as self-components of Loxosceles spider venom and can be involved in venom effects as spreading factors.


Assuntos
Hialuronoglucosaminidase/química , Diester Fosfórico Hidrolases/química , Serina Endopeptidases/química , Venenos de Aranha/química , Aranhas , Animais , Eletroforese em Gel de Ágar , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Coelhos , Espectrometria de Fluorescência , Relação Estrutura-Atividade
15.
Toxicon ; 50(8): 1162-74, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17900646

RESUMO

The clinical features of brown spider bites are the appearance of necrotic skin lesions, which can also be accompanied by systemic involvement, including weakness, vomiting, fever, convulsions, disseminated intravascular coagulation, intravascular hemolysis and renal disturbances. Severe systemic loxoscelism is much less common than the cutaneous form, but it may be the cause of clinical complications and even death following envenomation. Here, by using three recombinant dermonecrotic toxins, LiRecDT1, LiRecDT2 and LiRecDT3 (the major toxins found in the venom), we report the biological, immunological and structural differences for these members of this toxin family. Purified toxins evoked similar inflammatory reactions following injections into rabbit skin. Recombinant toxin treatments of MDCK cells with LiRecDT1 and LiRecDT2 changed cell viability, as evaluated by neutral red uptake and assessment of cell morphology through inverted microscopy, whereas LiRecDT3 caused only residual activity. Differences in cell cytotoxicity triggered by recombinant toxins were confirmed through a human red blood lysis assay, during which LiRecDT1 and LiRecDT2 caused a high degree of hemolysis compared to LiRecDT3, which induced only a small hemolytic effect. Additionally, biological differences for recombinant toxins were corroborated through mice lethality experiments, which showed animal mortality after LiRecDT1 and LiRecDT2 treatments, but an absence of lethality following LiRecDT3 exposure. Moreover, in experiments for edema, both the LiRecDT1 and the LiRecDT2 toxins evoked similar results, causing edema following toxin exposure, whereas LiRecDT3 caused only residual effects. Characterization of antigenic cross-reactivity using sera against crude venom toxins by immunoWestern blotting and immunodot blotting with recombinant LiRecDT1, LiRecDT2 and LiRecDT3 compared among themselves pointed to a higher cross-reactivity for LiRecDT1 compared to LiRecDT2 and LiRecDT3, corroborating structural and antigenic differences for these three toxins. Finally, evidence for structural differences among the recombinant toxins was strengthened by circular dichroism spectra, which suggested that the toxins were folded, and not aggregated or denatured proteins.


Assuntos
Fosfolipase D/toxicidade , Venenos de Aranha/toxicidade , Animais , Linhagem Celular , Dicroísmo Circular , Reações Cruzadas , Cães , Edema/induzido quimicamente , Hemólise/efeitos dos fármacos , Masculino , Fosfolipase D/química , Estrutura Secundária de Proteína , Coelhos , Proteínas Recombinantes/toxicidade , Venenos de Aranha/química , Aranhas
16.
Artigo em Inglês | MEDLINE | ID: mdl-28194160

RESUMO

Brown spiders are venomous arthropods that use their venom for predation and defense. In humans, bites of these animals provoke injuries including dermonecrosis with gravitational spread of lesions, hematological abnormalities and impaired renal function. The signs and symptoms observed following a brown spider bite are called loxoscelism. Brown spider venom is a complex mixture of toxins enriched in low molecular mass proteins (4-40 kDa). Characterization of the venom confirmed the presence of three highly expressed protein classes: phospholipases D, metalloproteases (astacins) and insecticidal peptides (knottins). Recently, toxins with low levels of expression have also been found in Loxosceles venom, such as serine proteases, protease inhibitors (serpins), hyaluronidases, allergen-like toxins and histamine-releasing factors. The toxin belonging to the phospholipase-D family (also known as the dermonecrotic toxin) is the most studied class of brown spider toxins. This class of toxins single-handedly can induce inflammatory response, dermonecrosis, hemolysis, thrombocytopenia and renal failure. The functional role of the hyaluronidase toxin as a spreading factor in loxoscelism has also been demonstrated. However, the biological characterization of other toxins remains unclear and the mechanism by which Loxosceles toxins exert their noxious effects is yet to be fully elucidated. The aim of this review is to provide an insight into brown spider venom toxins and toxicology, including a description of historical data already available in the literature. In this review article, the identification processes of novel Loxosceles toxins by molecular biology and proteomic approaches, their biological characterization and structural description based on x-ray crystallography and putative biotechnological uses are described along with the future perspectives in this field.

17.
Biochimie ; 88(9): 1241-53, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16581177

RESUMO

Brown spider (Genus Loxosceles) bites are normally associated with necrotic skin degeneration, gravitational spreading, massive inflammatory response at injured region, platelet aggregation causing thrombocytopenia and renal disturbances. Brown spider venom has a complex composition containing many different toxins, of which a well-studied component is the dermonecrotic toxin. This toxin alone may produce necrotic lesions, inflammatory response and platelet aggregation. Biochemically, dermonecrotic toxin belongs to a family of toxins with 30-35 kDa characterized as sphingomyelinase-D. Here, employing a cDNA library of Loxosceles intermedia venom gland, we cloned and expressed two recombinant isoforms of the dermonecrotic toxin LiRecDT2 (1062 bp cDNA) and LiRecDT3 (1007 bp cDNA) that encode for signal peptides and complete mature proteins. Phylogenetic tree analysis revealed a structural relationship for these toxins compared to other members of family. Recombinant molecules were expressed as N-terminal His-tag fusion proteins in Escherichia coli and were purified to homogeneity from cell lysates by Ni(2+) chelating chromatography, resulting in proteins of 33.8 kDa for LiRecDT2 and 34.0 kDa for LiRecDT3. Additional evidence for related toxins containing sequence/epitopes identity comes from antigenic cross-reactivity using antibodies against crude venom toxins and antibodies raised with a purified dermonecrotic toxin. Recombinant toxins showed differential functionality in rabbits: LiRecDT2 caused a macroscopic lesion with gravitational spreading upon intradermal injection, while LiRecDT3 evoked transient swelling and erythema upon injection site. Light microscopic analysis of skin biopsies revealed edema, a collection of inflammatory cells in and around blood vessels and a proteinaceous network at the dermis. Moreover, differential functionality for recombinant toxins was also demonstrated by a high sphingomyelinase activity for LiRecDT2 and low activity for LiRecDT3 as well as greater in vitro platelet aggregation and blood vessel permeability induced by LiRecDT2 and residual activity for LiRecDT3. Cloning and expression of two recombinant dermonecrotic toxins demonstrate an intraspecific family of homologous toxins that act in synergism for deleterious activities of the venom and open possibilities for biotechnological applications for recombinant toxins as research tools for understanding the inflammatory response, vascular integrity and platelet aggregation modulators.


Assuntos
Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Venenos de Aranha/química , Venenos de Aranha/genética , Aranhas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Camundongos , Dados de Sequência Molecular , Diester Fosfórico Hidrolases/farmacologia , Filogenia , Agregação Plaquetária/efeitos dos fármacos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/farmacologia , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Alinhamento de Sequência , Esfingomielina Fosfodiesterase/metabolismo , Venenos de Aranha/farmacologia , Aranhas/química
18.
Toxicon ; 47(8): 844-53, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16737725

RESUMO

Spiders of the Loxosceles genus have been responsible for severe clinical cases of envenomation worldwide. Accidents involving brown spiders can cause dermonecrotic injury, hemorrhage, hemolysis, platelet aggregation and renal failure. Histological findings of animals treated by venom have shown subendothelial blebs, vacuoles and endothelial cell membrane degeneration of blood vessel walls, as well as fibrin and thrombus formation. The mechanisms by which the venom causes these disorders are poorly understood. In this work, with an endothelial cell line derived from rabbit aorta, we were able to demonstrate that venom binds to the cell surface and the extracellular matrix. Moreover, we observed that the venom also induced morphological alterations, such as cell retraction, homophilic disadhesion and an increasing in filopodia projections. We also demonstrated that toxins present in the venom disorganized focal adhesion points and actin microfilaments of endothelial cells. Nevertheless, endothelial cell viability showed no alterations compared to controls. Additionally, venom treatment changed the fibronectin matrix profile synthesized by these cells as well as cell adhesion to fibronectin. These results suggest that the deleterious effects of venom on blood vessel walls could be a consequence of the direct effect on the endothelial cell surface and adhesive structures involved in blood vessel stability. These effects indirectly lead to leukocyte and platelet activation, disseminated intravascular coagulation and an increase in vessel permeability.


Assuntos
Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Venenos de Aranha/farmacologia , Aranhas , Animais , Adesão Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Células Endoteliais/ultraestrutura , Coelhos
19.
J Mol Model ; 22(9): 196, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27488102

RESUMO

Inhibitor cystine knots (ICKs) are a family of structural peptides with a large number of cysteine residues that form intramolecular disulfide bonds, resulting in a knot. These peptides are involved in a variety of biological functions including predation and defense, and are found in various species, such as spiders, scorpions, sea anemones, and plants. The Loxosceles intermedia venom gland transcriptome identified five groups of ICK peptides that represent more than 50 % of toxin-coding transcripts. Here, we describe the molecular cloning of U2-Sicaritoxin-Lit2 (U2-SCRTX-Lit2), bioinformatic characterization, structure prediction, and molecular dynamic analysis. The sequence of U2-SCRTX-Lit2 obtained from the transcriptome is similar to that of µ-Hexatoxin-Mg2, a peptide that inhibits the insect Nav channel. Bioinformatic analysis of sequences classified as ICK family members also showed a conservation of cysteine residues among ICKs from different spiders, with the three dimensional molecular model of U2-SCRTX-Lit2 similar in structure to the hexatoxin from µ-hexatoxin-Mg2a. Molecular docking experiments showed the interaction of U2-SCRTX-Lit2 to its predictable target-the Spodoptera litura voltage-gated sodium channel (SlNaVSC). After 200 ns of molecular dynamic simulation, the final structure of the complex showed stability in agreement with the experimental data. The above analysis corroborates the existence of a peptide toxin with insecticidal activity from a novel ICK family in L. intermedia venom and demonstrates that this peptide targets Nav channels.


Assuntos
Miniproteínas Nó de Cistina/química , Modelos Moleculares , Venenos de Aranha/química , Aranhas/química , Sequência de Aminoácidos , Animais , Clonagem Molecular , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína
20.
Toxicon ; 108: 154-66, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26474948

RESUMO

Loxosceles spiders are responsible for serious human envenomations worldwide. The collection of symptoms found in victims after accidents is called loxoscelism and is characterized by two clinical conditions: cutaneous loxoscelism and systemic loxocelism. The only specific treatment is serum therapy, in which an antiserum produced with Loxosceles venom is administered to the victims after spider accidents. Our aim was to improve our knowledge, regarding the immunological relationship among toxins from the most epidemiologic important species in Brazil (Loxosceles intermedia, Loxosceles gaucho and Loxosceles laeta). Immunoassays using spider venoms and L. intermedia recombinant toxins were performed and their cross-reactivity assessed. The biological conservation of the main Loxosceles toxins (Phospholipases-D, Astacin-like metalloproteases, Hyaluronidase, ICK-insecticide peptide and TCTP-histamine releasing factor) were investigated. An in silico analysis of the putative epitopes was performed and is discussed on the basis of the experimental results. Our data is an immunological investigation in light of biological conservation throughout the Loxosceles genus. The results bring out new insights on brown spider venom toxins for study, diagnosis and treatment of loxoscelism and putative biotechnological applications concerning immune conserved features in the toxins.


Assuntos
Antivenenos/imunologia , Venenos de Aranha/imunologia , Aranhas , Animais , Proteínas de Artrópodes/química , Biologia Computacional , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Venenos de Aranha/química , Venenos de Aranha/enzimologia , Proteína Tumoral 1 Controlada por Tradução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA