Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 146(11): 4659-4673, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37366338

RESUMO

The link between white matter hyperintensities (WMH) and cortical thinning is thought to be an important pathway by which WMH contributes to cognitive deficits in cerebral small vessel disease (SVD). However, the mechanism behind this association and the underlying tissue composition abnormalities are unclear. The objective of this study is to determine the association between WMH and cortical thickness, and the in vivo tissue composition abnormalities in the WMH-connected cortical regions. In this cross-sectional study, we included 213 participants with SVD who underwent standardized protocol including multimodal neuroimaging scans and cognitive assessment (i.e. processing speed, executive function and memory). We identified the cortex connected to WMH using probabilistic tractography starting from the WMH and defined the WMH-connected regions at three connectivity levels (low, medium and high connectivity level). We calculated the cortical thickness, myelin and iron of the cortex based on T1-weighted, quantitative R1, R2* and susceptibility maps. We used diffusion-weighted imaging to estimate the mean diffusivity of the connecting white matter tracts. We found that cortical thickness, R1, R2* and susceptibility values in the WMH-connected regions were significantly lower than in the WMH-unconnected regions (all Pcorrected < 0.001). Linear regression analyses showed that higher mean diffusivity of the connecting white matter tracts were related to lower thickness (ß = -0.30, Pcorrected < 0.001), lower R1 (ß = -0.26, Pcorrected = 0.001), lower R2* (ß = -0.32, Pcorrected < 0.001) and lower susceptibility values (ß = -0.39, Pcorrected < 0.001) of WMH-connected cortical regions at high connectivity level. In addition, lower scores on processing speed were significantly related to lower cortical thickness (ß = 0.20, Pcorrected = 0.030), lower R1 values (ß = 0.20, Pcorrected = 0.006), lower R2* values (ß = 0.29, Pcorrected = 0.006) and lower susceptibility values (ß = 0.19, Pcorrected = 0.024) of the WMH-connected regions at high connectivity level, independent of WMH volumes and the cortical measures of WMH-unconnected regions. Together, our study demonstrated that the microstructural integrity of white matter tracts passing through WMH is related to the regional cortical abnormalities as measured by thickness, R1, R2* and susceptibility values in the connected cortical regions. These findings are indicative of cortical thinning, demyelination and iron loss in the cortex, which is most likely through the disruption of the connecting white matter tracts and may contribute to processing speed impairment in SVD, a key clinical feature of SVD. These findings may have implications for finding intervention targets for the treatment of cognitive impairment in SVD by preventing secondary degeneration.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Transtornos Cognitivos , Doenças Desmielinizantes , Substância Branca , Humanos , Afinamento Cortical Cerebral , Estudos Transversais , Substância Branca/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/psicologia , Doenças Desmielinizantes/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
2.
Stroke ; 54(5): 1367-1376, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36912138

RESUMO

BACKGROUND: Structural network damage is a potentially important mechanism by which cerebral small vessel disease (SVD) can cause cognitive impairment. As a central hub of the structural network, the role of thalamus in SVD-related cognitive impairments remains unclear. We aimed to determine the associations between the structural alterations of thalamic subregions and cognitive impairments in SVD. METHODS: In this cross-sectional study, 205 SVD participants without thalamic lacunes from the third follow-up (2020) of the prospective RUN DMC study (Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Cohort), which was initiated in 2006, Nijmegen, were included. Cognitive functions included processing speed, executive function, and memory. Probabilistic tractography was performed from thalamus to 6 cortical regions, followed by connectivity-based thalamic segmentation to assess each thalamic subregion volume and connectivity (measured by mean diffusivity [MD] of the connecting white matter tracts) with the cortex. Least absolute shrinkage and selection operator regression analysis was conducted to identify the volumes or connectivity of the total thalamus and 6 thalamic subregions that have the strongest association with cognitive performance. Linear regression and mediation analyses were performed to test the association of least absolute shrinkage and selection operator-selected thalamic subregion volume or MD with cognitive performance, while adjusting for age and education. RESULTS: We found that higher MD of the thalamic-motor tract was associated with worse processing speed (ß=-0.27; P<0.001), higher MD of the thalamic-frontal tract was associated with worse executive function (ß=-0.24; P=0.001), and memory (ß=-0.28; P<0.001), respectively. The mediation analysis showed that MD of thalamocortical tracts mediated the association between corresponding thalamic subregion volumes and the cognitive performances in 3 domains. CONCLUSIONS: Our results suggest that the structural alterations of thalamus are linked to cognitive impairment in SVD, largely depending on the damage pattern of the white matter tracts connecting specific thalamic subregions and cortical regions.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Disfunção Cognitiva , Substância Branca , Humanos , Imagem de Tensor de Difusão/métodos , Estudos Prospectivos , Estudos Transversais , Imageamento por Ressonância Magnética , Tálamo/patologia , Doenças de Pequenos Vasos Cerebrais/complicações
3.
Neuroimage ; 266: 119824, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36539169

RESUMO

In this study, we optimized the variable flip angle (VFA) acquisition scheme using numerical simulations to shorten the acquisition time of multicompartment relaxometry for myelin water imaging (MCR-MWI) to a clinically practical range in the absence of advanced image reconstruction methods. As the primary objective of this study, the test-retest repeatability of myelin water fraction (MWF) measurements of MCR-MWI is evaluated on three gradient echo (GRE) sequence settings using the optimized VFA schemes with different echo times and repetition times, emulating various scanner setups. The cross-protocol reproducibility of MCR-MWI and MCR with diffusion-informed myelin water imaging (MCR-DIMWI) is also examined. As a secondary objective, we explore the bundle-specific profiles of various microstructural parameters from MCR-(DI)MWI and their cross-correlations to determine if these parameters possess supplementary microstructure information beyond myelin concentration. Numerical simulations indicate that MCR-MWI can be performed with a minimum of three flip angles covering a wide range of T1 weightings without adding significant bias. This is supported by the results of an in vivo experiment, allowing whole-brain 1.5 mm isotropic MWF maps to be acquired in 9 min, reducing the total scan time to 40% of the original implementation without significant quality degradation. Good test-retest repeatability is observed for MCR-MWI for all three GRE protocols. While good correlations can also be found in MWF across protocols, systematic differences are observed. Bundle-specific MWF analysis reveals that certain white matter bundles are similar in all participants. We also found that microstructure relaxation parameters have low linear correlations with MWF. MCR-MWI is a reproducible measure of myelin. However, attention should be paid to the protocol related MWF differences when comparing different studies, as the MWF bias up to 0.5% can be observed across the protocols examined in this work.


Assuntos
Bainha de Mielina , Água , Humanos , Bainha de Mielina/metabolismo , Água/análise , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
4.
Eur J Neurosci ; 57(7): 1141-1160, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36808163

RESUMO

Converging evidence from studies of human and nonhuman animals suggests that the hippocampus contributes to sequence learning by using temporal context to bind sequentially occurring items. The fornix is a white matter pathway containing the major input and output pathways of the hippocampus, including projections from medial septum and to diencephalon, striatum, lateral septum and prefrontal cortex. If the fornix meaningfully contributes to hippocampal function, then individual differences in fornix microstructure might predict sequence memory. Here, we tested this prediction by performing tractography in 51 healthy adults who had undertaken a sequence memory task. Microstructure properties of the fornix were compared with those of tracts connecting medial temporal lobe regions but not predominantly the hippocampus: the Parahippocampal Cingulum bundle (PHC) (conveying retrosplenial projections to parahippocampal cortex) and the Inferior Longitudinal Fasciculus (ILF) (conveying occipital projections to perirhinal cortex). Using principal components analysis, we combined Free-Water Elimination Diffusion Tensor Imaging and Neurite Orientation Dispersion and Density Imaging measures obtained from multi-shell diffusion MRI into two informative indices: the first (PC1) capturing axonal packing/myelin and the second (PC2) capturing microstructural complexity. We found a significant correlation between fornix PC2 and implicit reaction-time indices of sequence memory, indicating that greater fornix microstructural complexity is associated with better sequence memory. No such relationship was found with measures from the PHC and ILF. This study highlights the importance of the fornix in aiding memory for objects within a temporal context, potentially reflecting a role in mediating inter-regional communication within an extended hippocampal system.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Adulto , Humanos , Imagem de Tensor de Difusão/métodos , Fórnice/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Lobo Temporal/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Substância Branca/diagnóstico por imagem
5.
Neuroimage ; 260: 119423, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35809886

RESUMO

It is estimated that in the human brain, short association fibres (SAF) represent more than half of the total white matter volume and their involvement has been implicated in a range of neurological and psychiatric conditions. This population of fibres, however, remains relatively understudied in the neuroimaging literature. Some of the challenges pertinent to the mapping of SAF include their variable anatomical course and proximity to the cortical mantle, leading to partial volume effects and potentially affecting streamline trajectory estimation. This work considers the impact of seeding and filtering strategies and choice of scanner, acquisition, data resampling to propose a whole-brain, surface-based short (≤30-40 mm) SAF tractography approach. The framework is shown to produce longer streamlines with a predilection for connecting gyri as well as high cortical coverage. We further demonstrate that certain areas of subcortical white matter become disproportionally underrepresented in diffusion-weighted MRI data with lower angular and spatial resolution and weaker diffusion weighting; however, collecting data with stronger gradients than are usually available clinically has minimal impact, making our framework translatable to data collected on commonly available hardware. Finally, the tractograms are examined using voxel- and surface-based measures of consistency, demonstrating moderate reliability, low repeatability and high between-subject variability, urging caution when streamline count-based analyses of SAF are performed.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Substância Branca/diagnóstico por imagem
6.
Hum Brain Mapp ; 43(11): 3439-3460, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35396899

RESUMO

White matter (WM) alterations have been observed in Huntington disease (HD) but their role in the disease-pathophysiology remains unknown. We assessed WM changes in premanifest HD by exploiting ultra-strong-gradient magnetic resonance imaging (MRI). This allowed to separately quantify magnetization transfer ratio (MTR) and hindered and restricted diffusion-weighted signal fractions, and assess how they drove WM microstructure differences between patients and controls. We used tractometry to investigate region-specific alterations across callosal segments with well-characterized early- and late-myelinating axon populations, while brain-wise differences were explored with tract-based cluster analysis (TBCA). Behavioral measures were included to explore disease-associated brain-function relationships. We detected lower MTR in patients' callosal rostrum (tractometry: p = .03; TBCA: p = .03), but higher MTR in their splenium (tractometry: p = .02). Importantly, patients' mutation-size and MTR were positively correlated (all p-values < .01), indicating that MTR alterations may directly result from the mutation. Further, MTR was higher in younger, but lower in older patients relative to controls (p = .003), suggesting that MTR increases are detrimental later in the disease. Finally, patients showed higher restricted diffusion signal fraction (FR) from the composite hindered and restricted model of diffusion (CHARMED) in the cortico-spinal tract (p = .03), which correlated positively with MTR in the posterior callosum (p = .033), potentially reflecting compensatory mechanisms. In summary, this first comprehensive, ultra-strong gradient MRI study in HD provides novel evidence of mutation-driven MTR alterations at the premanifest disease stage which may reflect neurodevelopmental changes in iron, myelin, or a combination of these.


Assuntos
Doença de Huntington , Substância Branca , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/genética , Doença de Huntington/patologia , Imageamento por Ressonância Magnética/métodos , Mutação , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
7.
Neuroimage ; 236: 117967, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33845062

RESUMO

The anisotropy of brain white matter microstructure manifests itself in orientational-dependence of various MRI contrasts, and can result in significant quantification biases if ignored. Understanding the origins of this orientation-dependence could enhance the interpretation of MRI signal changes in development, ageing and disease and ultimately improve clinical diagnosis. Using a novel experimental setup, this work studies the contributions of the intra- and extra-axonal water to the orientation-dependence of one of the most clinically-studied parameters, apparent transverse relaxation T2. Specifically, a tiltable receive coil is interfaced with an ultra-strong gradient MRI scanner to acquire multidimensional MRI data with an unprecedented range of acquisition parameters. Using this setup, compartmental T2 can be disentangled based on differences in diffusional-anisotropy, and its orientation-dependence further elucidated by re-orienting the head with respect to the main magnetic field B→0. A dependence of (compartmental) T2 on the fibre orientation w.r.t. B→0 was observed, and further quantified using characteristic representations for susceptibility- and magic angle effects. Across white matter, anisotropy effects were dominated by the extra-axonal water signal, while the intra-axonal water signal decay varied less with fibre-orientation. Moreover, the results suggest that the stronger extra-axonal T2 orientation-dependence is dominated by magnetic susceptibility effects (presumably from the myelin sheath) while the weaker intra-axonal T2 orientation-dependence may be driven by a combination of microstructural effects. Even though the current design of the tiltable coil only offers a modest range of angles, the results demonstrate an overall effect of tilt and serve as a proof-of-concept motivating further hardware development to facilitate experiments that explore orientational anisotropy. These observations have the potential to lead to white matter microstructural models with increased compartmental sensitivity to disease, and can have direct consequences for longitudinal and group-wise T2- and diffusion-MRI data analysis, where the effect of head-orientation in the scanner is commonly ignored.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem , Adulto , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Modelos Teóricos
8.
Neuroimage ; 227: 117617, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33301934

RESUMO

At the typical spatial resolution of MRI in the human brain, approximately 60-90% of voxels contain multiple fiber populations. Quantifying microstructural properties of distinct fiber populations within a voxel is therefore challenging but necessary. While progress has been made for diffusion and T1-relaxation properties, how to resolve intra-voxel T2 heterogeneity remains an open question. Here a novel framework, named COMMIT-T2, is proposed that uses tractography-based spatial regularization with diffusion-relaxometry data to estimate multiple intra-axonal T2 values within a voxel. Unlike previously-proposed voxel-based T2 estimation methods, which (when applied in white matter) implicitly assume just one fiber bundle in the voxel or the same T2 for all bundles in the voxel, COMMIT-T2 can recover specific T2 values for each unique fiber population passing through the voxel. In this approach, the number of recovered unique T2 values is not determined by a number of model parameters set a priori, but rather by the number of tractography-reconstructed streamlines passing through the voxel. Proof-of-concept is provided in silico and in vivo, including a demonstration that distinct tract-specific T2 profiles can be recovered even in the three-way crossing of the corpus callosum, arcuate fasciculus, and corticospinal tract. We demonstrate the favourable performance of COMMIT-T2 compared to that of voxelwise approaches for mapping intra-axonal T2 exploiting diffusion, including a direction-averaged method and AMICO-T2, a new extension to the previously-proposed Accelerated Microstructure Imaging via Convex Optimization (AMICO) framework.


Assuntos
Axônios , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Algoritmos , Mapeamento Encefálico/métodos , Simulação por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos
9.
Neuroimage ; 225: 117406, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33045335

RESUMO

We provide a rich multi-contrast microstructural MRI dataset acquired on an ultra-strong gradient 3T Connectom MRI scanner comprising 5 repeated sets of MRI microstructural contrasts in 6 healthy human participants. The availability of data sets that support comprehensive simultaneous assessment of test-retest reliability of multiple microstructural contrasts (i.e., those derived from advanced diffusion, multi-component relaxometry and quantitative magnetisation transfer MRI) in the same population is extremely limited. This unique dataset is offered to the imaging community as a test-bed resource for conducting specialised analyses that may assist and inform their current and future research. The Microstructural Image Compilation with Repeated Acquisitions (MICRA) dataset includes raw data and computed microstructure maps derived from multi-shell and multi-direction encoded diffusion, multi-component relaxometry and quantitative magnetisation transfer acquisition protocols. Our data demonstrate high reproducibility of several microstructural MRI measures across scan sessions as shown by intra-class correlation coefficients and coefficients of variation. To illustrate a potential use of the MICRA dataset, we computed sample sizes required to provide sufficient statistical power a priori across different white matter pathways and microstructure measures for different statistical comparisons. We also demonstrate whole brain white matter voxel-wise repeatability in several microstructural maps. The MICRA dataset will be of benefit to researchers wishing to conduct similar reliability tests, power estimations or to evaluate the robustness of their own analysis pipelines.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Adulto , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Adulto Jovem
10.
Neuroimage ; 243: 118502, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34433094

RESUMO

White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and well-chosen constraints and decisions in the dissection process.


Assuntos
Imagem de Tensor de Difusão/métodos , Dissecação/métodos , Substância Branca/diagnóstico por imagem , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Vias Neurais/diagnóstico por imagem
11.
Hum Brain Mapp ; 42(2): 310-328, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33022844

RESUMO

Diffusion MRI techniques are used widely to study the characteristics of the human brain connectome in vivo. However, to resolve and characterise white matter (WM) fibres in heterogeneous MRI voxels remains a challenging problem typically approached with signal models that rely on prior information and constraints. We have recently introduced a 5D relaxation-diffusion correlation framework wherein multidimensional diffusion encoding strategies are used to acquire data at multiple echo-times to increase the amount of information encoded into the signal and ease the constraints needed for signal inversion. Nonparametric Monte Carlo inversion of the resulting datasets yields 5D relaxation-diffusion distributions where contributions from different sub-voxel tissue environments are separated with minimal assumptions on their microscopic properties. Here, we build on the 5D correlation approach to derive fibre-specific metrics that can be mapped throughout the imaged brain volume. Distribution components ascribed to fibrous tissues are resolved, and subsequently mapped to a dense mesh of overlapping orientation bins to define a smooth orientation distribution function (ODF). Moreover, relaxation and diffusion measures are correlated to each independent ODF coordinate, thereby allowing the estimation of orientation-specific relaxation rates and diffusivities. The proposed method is tested on a healthy volunteer, where the estimated ODFs were observed to capture major WM tracts, resolve fibre crossings, and, more importantly, inform on the relaxation and diffusion features along with distinct fibre bundles. If combined with fibre-tracking algorithms, the methodology presented in this work has potential for increasing the depth of characterisation of microstructural properties along individual WM pathways.


Assuntos
Algoritmos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Imagem de Difusão por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Encéfalo/fisiologia , Bases de Dados Factuais , Humanos , Método de Monte Carlo , Substância Branca/fisiologia
12.
Hum Brain Mapp ; 41(10): 2583-2595, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32216121

RESUMO

Recent advances in diffusion magnetic resonance imaging (dMRI) analysis techniques have improved our understanding of fibre-specific variations in white matter microstructure. Increasingly, studies are adopting multi-shell dMRI acquisitions to improve the robustness of dMRI-based inferences. However, the impact of b-value choice on the estimation of dMRI measures such as apparent fibre density (AFD) derived from spherical deconvolution is not known. Here, we investigate the impact of b-value sampling scheme on estimates of AFD. First, we performed simulations to assess the correspondence between AFD and simulated intra-axonal signal fraction across multiple b-value sampling schemes. We then studied the impact of sampling scheme on the relationship between AFD and age in a developmental population (n = 78) aged 8-18 (mean = 12.4, SD = 2.9 years) using hierarchical clustering and whole brain fixel-based analyses. Multi-shell dMRI data were collected at 3.0T using ultra-strong gradients (300 mT/m), using 6 diffusion-weighted shells ranging from b = 0 to 6,000 s/mm2 . Simulations revealed that the correspondence between estimated AFD and simulated intra-axonal signal fraction was improved with high b-value shells due to increased suppression of the extra-axonal signal. These results were supported by in vivo data, as sensitivity to developmental age-relationships was improved with increasing b-value (b = 6,000 s/mm2 , median R2 = .34; b = 4,000 s/mm2 , median R2 = .29; b = 2,400 s/mm2 , median R2 = .21; b = 1,200 s/mm2 , median R2 = .17) in a tract-specific fashion. Overall, estimates of AFD and age-related microstructural development were better characterised at high diffusion-weightings due to improved correspondence with intra-axonal properties.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Fibras Nervosas , Neuroimagem/métodos , Adolescente , Criança , Simulação por Computador , Feminino , Humanos , Masculino
13.
Hum Brain Mapp ; 41(7): 1859-1874, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31925871

RESUMO

Investigative studies of white matter (WM) brain structures using diffusion MRI (dMRI) tractography frequently require manual WM bundle segmentation, often called "virtual dissection." Human errors and personal decisions make these manual segmentations hard to reproduce, which have not yet been quantified by the dMRI community. It is our opinion that if the field of dMRI tractography wants to be taken seriously as a widespread clinical tool, it is imperative to harmonize WM bundle segmentations and develop protocols aimed to be used in clinical settings. The EADC-ADNI Harmonized Hippocampal Protocol achieved such standardization through a series of steps that must be reproduced for every WM bundle. This article is an observation of the problematic. A specific bundle segmentation protocol was used in order to provide a real-life example, but the contribution of this article is to discuss the need for reproducibility and standardized protocol, as for any measurement tool. This study required the participation of 11 experts and 13 nonexperts in neuroanatomy and "virtual dissection" across various laboratories and hospitals. Intra-rater agreement (Dice score) was approximately 0.77, while inter-rater was approximately 0.65. The protocol provided to participants was not necessarily optimal, but its design mimics, in essence, what will be required in future protocols. Reporting tractometry results such as average fractional anisotropy, volume or streamline count of a particular bundle without a sufficient reproducibility score could make the analysis and interpretations more difficult. Coordinated efforts by the diffusion MRI tractography community are needed to quantify and account for reproducibility of WM bundle extraction protocols in this era of open and collaborative science.


Assuntos
Imagem de Tensor de Difusão/métodos , Anisotropia , Imagem de Difusão por Ressonância Magnética , Dissecação , Humanos , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Substância Branca/diagnóstico por imagem
14.
Neuroimage ; 199: 663-679, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31195073

RESUMO

Diffusion weighted magnetic resonance imaging (dMRI) provides a non invasive virtual reconstruction of the brain's white matter structures through tractography. Analyzing dMRI measures along the trajectory of white matter bundles can provide a more specific investigation than considering a region of interest or tract-averaged measurements. However, performing group analyses with this along-tract strategy requires correspondence between points of tract pathways across subjects. This is usually achieved by creating a new common space where the representative streamlines from every subject are resampled to the same number of points. If the underlying anatomy of some subjects was altered due to, e.g., disease or developmental changes, such information might be lost by resampling to a fixed number of points. In this work, we propose to address the issue of possible misalignment, which might be present even after resampling, by realigning the representative streamline of each subject in this 1D space with a new method, coined diffusion profile realignment (DPR). Experiments on synthetic datasets show that DPR reduces the coefficient of variation for the mean diffusivity, fractional anisotropy and apparent fiber density when compared to the unaligned case. Using 100 in vivo datasets from the human connectome project, we simulated changes in mean diffusivity, fractional anisotropy and apparent fiber density. Independent Student's t-tests between these altered subjects and the original subjects indicate that regional changes are identified after realignment with the DPR algorithm, while preserving differences previously detected in the unaligned case. This new correction strategy contributes to revealing effects of interest which might be hidden by misalignment and has the potential to improve the specificity in longitudinal population studies beyond the traditional region of interest based analysis and along-tract analysis workflows.


Assuntos
Algoritmos , Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Substância Branca/diagnóstico por imagem , Adulto , Simulação por Computador , Interpretação Estatística de Dados , Humanos
15.
Neuroimage ; 200: 89-100, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31228638

RESUMO

Various diffusion MRI (dMRI) measures have been proposed for characterising tissue microstructure over the last 15 years. Despite the growing number of experiments using different dMRI measures in assessments of white matter, there has been limited work on: 1) examining their covariance along specific pathways; and on 2) combining these different measures to study tissue microstructure. Indeed, it quickly becomes intractable for existing analysis pipelines to process multiple measurements at each voxel and at each vertex forming a streamline, highlighting the need for new ways to visualise or analyse such high-dimensional data. In a sample of 36 typically developing children aged 8-18 years, we profiled various commonly used dMRI measures across 22 brain pathways. Using a data-reduction approach, we identified two biologically-interpretable components that capture 80% of the variance in these dMRI measures. The first derived component captures properties related to hindrance and restriction in tissue microstructure, while the second component reflects characteristics related to tissue complexity and orientational dispersion. We then demonstrate that the components generated by this approach preserve the biological relevance of the original measurements by showing age-related effects across developmentally sensitive pathways. In summary, our findings demonstrate that dMRI analyses can benefit from dimensionality reduction techniques, to help disentangling the neurobiological underpinnings of white matter organisation.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Substância Branca/anatomia & histologia , Adolescente , Criança , Imagem de Difusão por Ressonância Magnética/normas , Imagem de Tensor de Difusão/métodos , Imagem de Tensor de Difusão/normas , Feminino , Humanos , Masculino , Substância Branca/diagnóstico por imagem
16.
Neuroimage ; 185: 1-11, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30317017

RESUMO

Diffusion MRI fiber tractography is widely used to probe the structural connectivity of the brain, with a range of applications in both clinical and basic neuroscience. Despite widespread use, tractography has well-known pitfalls that limits the anatomical accuracy of this technique. Numerous modern methods have been developed to address these shortcomings through advances in acquisition, modeling, and computation. To test whether these advances improve tractography accuracy, we organized the 3-D Validation of Tractography with Experimental MRI (3D-VoTEM) challenge at the ISBI 2018 conference. We made available three unique independent tractography validation datasets - a physical phantom and two ex vivo brain specimens - resulting in 176 distinct submissions from 9 research groups. By comparing results over a wide range of fiber complexities and algorithmic strategies, this challenge provides a more comprehensive assessment of tractography's inherent limitations than has been reported previously. The central results were consistent across all sub-challenges in that, despite advances in tractography methods, the anatomical accuracy of tractography has not dramatically improved in recent years. Taken together, our results independently confirm findings from decades of tractography validation studies, demonstrate inherent limitations in reconstructing white matter pathways using diffusion MRI data alone, and highlight the need for alternative or combinatorial strategies to accurately map the fiber pathways of the brain.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Vias Neurais/anatomia & histologia , Humanos
17.
Neuroimage ; 172: 130-145, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29355769

RESUMO

Advances in understanding the structural connectomes of human brain require improved approaches for the construction, comparison and integration of high-dimensional whole-brain tractography data from a large number of individuals. This article develops a population-based structural connectome (PSC) mapping framework to address these challenges. PSC simultaneously characterizes a large number of white matter bundles within and across different subjects by registering different subjects' brains based on coarse cortical parcellations, compressing the bundles of each connection, and extracting novel connection weights. A robust tractography algorithm and streamline post-processing techniques, including dilation of gray matter regions, streamline cutting, and outlier streamline removal are applied to improve the robustness of the extracted structural connectomes. The developed PSC framework can be used to reproducibly extract binary networks, weighted networks and streamline-based brain connectomes. We apply the PSC to Human Connectome Project data to illustrate its application in characterizing normal variations and heritability of structural connectomes in healthy subjects.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Humanos
18.
Hum Brain Mapp ; 38(1): 509-527, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27647682

RESUMO

Streamline tractography algorithms infer connectivity from diffusion MRI (dMRI) by following diffusion directions which are similarly aligned between neighboring voxels. However, not all white matter (WM) fascicles are organized in this manner. For example, Meyer's loop is a highly curved portion of the optic radiation (OR) that exhibits a narrow turn, kissing and crossing pathways, and changes in fascicle dispersion. From a neurosurgical perspective, damage to Meyer's loop carries a potential risk of inducing vision deficits to the patient, especially during temporal lobe resection surgery. To prevent such impairment, achieving an accurate delineation of Meyer's loop with tractography is thus of utmost importance. However, current algorithms tend to under-estimate the full extent of Meyer's loop, mainly attributed to the aforementioned rule for connectivity which requires a direction to be chosen across a field of orientations. In this article, it was demonstrated that MAGNEtic Tractography (MAGNET) can benefit Meyer's loop delineation by incorporating anatomical knowledge of the expected fiber orientation to overcome local ambiguities. A new ROI-mechanism was proposed which supplies additional information to streamline reconstruction algorithms by the means of oriented priors. Their results showed that MAGNET can accurately generate Meyer's loop in all of our 15 child subjects (8 males; mean age 10.2 years ± 3.1). It effectively improved streamline coverage when compared with deterministic tractography, and significantly reduced the distance between the anterior-most portion of Meyer's loop and the temporal pole by 16.7 mm on average, a crucial landmark used for preoperative planning of temporal lobe surgery. Hum Brain Mapp 38:509-527, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Mapeamento Encefálico , Imagem de Tensor de Difusão , Corpos Geniculados/diagnóstico por imagem , Fibras Nervosas/fisiologia , Vias Visuais/diagnóstico por imagem , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino
19.
Neuroimage ; 83: 245-61, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23791914

RESUMO

In this paper, a new single image acquisition super-resolution method is proposed to increase image resolution of diffusion weighted (DW) images. Based on a nonlocal patch-based strategy, the proposed method uses a non-diffusion image (b0) to constrain the reconstruction of DW images. An extensive validation is presented with a gold standard built on averaging 10 high-resolution DW acquisitions. A comparison with classical interpolation methods such as trilinear and B-spline demonstrates the competitive results of our proposed approach in terms of improvements on image reconstruction, fractional anisotropy (FA) estimation, generalized FA and angular reconstruction for tensor and high angular resolution diffusion imaging (HARDI) models. Besides, first results of reconstructed ultra high resolution DW images are presented at 0.6×0.6×0.6 mm3 and 0.4×0.4×0.4 mm3 using our gold standard based on the average of 10 acquisitions, and on a single acquisition. Finally, fiber tracking results show the potential of the proposed super-resolution approach to accurately analyze white matter brain architecture.


Assuntos
Algoritmos , Encéfalo/ultraestrutura , Conectoma/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Fibras Nervosas Mielinizadas/ultraestrutura , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
bioRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37808645

RESUMO

Characterizing how, when and where the human brain changes across the lifespan is fundamental to our understanding of developmental processes of childhood and adolescence, degenerative processes of aging, and divergence from normal patterns in disease and disorders. We aimed to provide detailed descriptions of white matter pathways across the lifespan by thoroughly characterizing white matter microstructure, white matter macrostructure, and morphology of the cortex associated with white matter pathways. We analyzed 4 large, high-quality, publicly-available datasets comprising 2789 total imaging sessions, and participants ranging from 0 to 100 years old, using advanced tractography and diffusion modeling. We first find that all microstructural, macrostructural, and cortical features of white matter bundles show unique lifespan trajectories, with rates and timing of development and degradation that vary across pathways - describing differences between types of pathways and locations in the brain, and developmental milestones of maturation of each feature. Second, we show cross-sectional relationships between different features that may help elucidate biological changes occurring during different stages of the lifespan. Third, we show unique trajectories of age-associations across features. Finally, we find that age associations during development are strongly related to those during aging. Overall, this study reports normative data for several features of white matter pathways of the human brain that will be useful for studying normal and abnormal white matter development and degeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA