Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092762

RESUMO

Evading programmed cell death (PCD) is a hallmark of cancer that allows tumor cells to survive and proliferate unchecked. Endocytosis, the process by which cells internalize extracellular materials, has emerged as a key regulator of cell death pathways in cancer. Many tumor types exhibit dysregulated endocytic dynamics that fuel their metabolic demands, promote resistance to cytotoxic therapies, and facilitate immune evasion. This review examines the roles of endocytosis in apoptotic resistance and immune escape mechanisms utilized by cancer cells. We highlight how inhibiting endocytosis can sensitize malignant cells to therapeutic agents and restore susceptibility to PCD. Strategies to modulate endocytosis for enhanced cancer treatment are discussed, including targeting endocytic regulatory proteins, altering membrane biophysical properties, and inhibiting Rho-associated kinases. While promising, challenges remain regarding the specificity and selectivity of endocytosis-targeting agents. Nonetheless, harnessing endocytic pathways represents an attractive approach to overcome apoptotic resistance and could yield more effective therapies by rendering cancer cells vulnerable to PCD. Understanding the interplay between endocytosis and PCD regulation is crucial for developing novel anticancer strategies that selectively induce tumor cell death.

2.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370749

RESUMO

Integrin-based adhesion complexes are crucial in various cellular processes, including proliferation, differentiation, and motility. While the dynamics of canonical focal adhesion complexes (FAs) have been extensively studied, the regulation and physiological implications of the recently identified clathrin-containing adhesion complexes (CCACs) are still not well understood. In this study, we investigated the spatiotemporal mechanoregulations of FAs and CCACs in a breast cancer model. Employing single-molecule force spectroscopy coupled with live-cell fluorescence microscopy, we discovered that FAs and CCACs are mutually exclusive and inversely regulated complexes. This regulation is orchestrated through the modulation of plasma membrane tension, in combination with distinct modes of actomyosin contractility that can either synergize with or counteract this modulation. Our findings indicate that increased membrane tension promotes the association of CCACs at integrin αVß5 adhesion sites, leading to decreased cancer cell proliferation, spreading, and migration. Conversely, lower membrane tension promotes the formation of FAs, which correlates with the softer membranes observed in cancer cells, thus potentially facilitating cancer progression. Our research provides novel insights into the biomechanical regulation of CCACs and FAs, revealing their critical and contrasting roles in modulating cancer cell progression.

3.
Cell Death Dis ; 15(6): 440, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909035

RESUMO

The transmembrane death receptor Fas transduces apoptotic signals upon binding its ligand, FasL. Although Fas is highly expressed in cancer cells, insufficient cell surface Fas expression desensitizes cancer cells to Fas-induced apoptosis. Here, we show that the increase in Fas microaggregate formation on the plasma membrane in response to the inhibition of endocytosis sensitizes cancer cells to Fas-induced apoptosis. We used a clinically accessible Rho-kinase inhibitor, fasudil, that reduces endocytosis dynamics by increasing plasma membrane tension. In combination with exogenous soluble FasL (sFasL), fasudil promoted cancer cell apoptosis, but this collaborative effect was substantially weaker in nonmalignant cells. The combination of sFasL and fasudil prevented glioblastoma cell growth in embryonic stem cell-derived brain organoids and induced tumor regression in a xenograft mouse model. Our results demonstrate that sFasL has strong potential for apoptosis-directed cancer therapy when Fas microaggregate formation is augmented by mechano-inhibition of endocytosis.


Assuntos
Apoptose , Endocitose , Proteína Ligante Fas , Receptor fas , Humanos , Endocitose/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Animais , Proteína Ligante Fas/metabolismo , Receptor fas/metabolismo , Camundongos , Linhagem Celular Tumoral , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA