Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(2): e2204298, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36354195

RESUMO

Sensitive detection of extracellular vesicles (EVs) as emerging biomarkers has shown great promises for disease diagnosis. Plasmonic metal nanostructures conjugated with molecules that bind specific biomarker targets are widely used for EVs sensing but involve tradeoffs between particle-size-dependent signal intensity and conjugation efficiency. One solution to this problem would be to induce nucleation on nanoparticles that have successfully bound a target biomarker to permit in situ nanoparticle growth for signal amplification, but approaches that are evaluated to date require harsh conditions or lack nucleation specificity, prohibiting their effective use with most biological specimens. This study describes a one-step in situ strategy to induce monocrystalline copper shell growth on gold nanorod probes without decreasing signal by disrupting probe-target interactions or lipid bilayer integrity to enable EV biomarker detections. This approach increases the detected nanoparticle signal about two orders of magnitude after a 10 min copper nanoshell growth reaction. This has significant implications for improved disease detection, as indicated by the ability of a novel immunoassay using this approach to detect low abundance EVs carrying a pathogen-derived biomarker, after their direct capture from serum, to facilitate the diagnosis of tuberculosis cases in a diagnostically challenging pediatric cohort.


Assuntos
Vesículas Extracelulares , Nanopartículas , Humanos , Criança , Cobre/metabolismo , Biomarcadores/análise , Bicamadas Lipídicas/metabolismo , Vesículas Extracelulares/metabolismo
2.
ACS Nano ; 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36595218

RESUMO

Interferon-gamma release assays (IGRAs) that measure pathogen-specific T-cell response rates can provide a more reliable estimate of protection than specific antibody levels but have limited potential for widespread use due to their workflow, personnel, and instrumentation demands. The major vaccines for SARS-CoV-2 have demonstrated substantial efficacy against all of its current variants, but approaches are needed to determine how these vaccines will perform against future variants, as they arise, to inform vaccine and public health policies. Here we describe a rapid, sensitive, nanolayer polylysine-integrated microfluidic chip IGRA read by a fluorescent microscope that has a 5 h sample-to-answer time and uses ∼25 µL of a fingerstick whole blood sample. Results from this assay correlated with those of a comparable clinical IGRA when used to evaluate the T-cell response to SARS-CoV-2 peptides in a population of vaccinated and/or infected individuals. Notably, this streamlined and inexpensive assay is suitable for high-throughput analyses in resource-limited settings for other infectious diseases.

3.
ACS Nano ; 16(7): 9985-9993, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35793456

RESUMO

Several recent viral outbreaks, culminating in the COVID-19 pandemic, have illustrated the need for comprehensive improvement in the detection, control, and treatment of emerging viruses that exhibit the potential to cause epidemics. Nanotechnology approaches have the potential to make major contributions in all these areas. This perspective is intended to outline how nanotechnology can be employed to improve upon respiratory disease detection and containment measures, and therapeutics, with a particular emphasis on applications that can address key areas, including home diagnostics, contact tracing, and the evaluation of durability of vaccine protection over time and against future variants. Nanotechnology offers potent tools to address these needs, but further research is required to validate these applications to address needs of future epidemics.


Assuntos
COVID-19 , Viroses , Humanos , Pandemias/prevenção & controle , SARS-CoV-2 , Nanotecnologia
4.
Acta Pharm Sin B ; 12(10): 3822-3842, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36213541

RESUMO

Extracellular vesicles (EVs) are secreted by both eukaryotes and prokaryotes, and are present in all biological fluids of vertebrates, where they transfer DNA, RNA, proteins, lipids, and metabolites from donor to recipient cells in cell-to-cell communication. Some EV components can also indicate the type and biological status of their parent cells and serve as diagnostic targets for liquid biopsy. EVs can also natively carry or be modified to contain therapeutic agents (e.g., nucleic acids, proteins, polysaccharides, and small molecules) by physical, chemical, or bioengineering strategies. Due to their excellent biocompatibility and stability, EVs are ideal nanocarriers for bioactive ingredients to induce signal transduction, immunoregulation, or other therapeutic effects, which can be targeted to specific cell types. Herein, we review EV classification, intercellular communication, isolation, and characterization strategies as they apply to EV therapeutics. This review focuses on recent advances in EV applications as therapeutic carriers from in vitro research towards in vivo animal models and early clinical applications, using representative examples in the fields of cancer chemotherapeutic drug, cancer vaccine, infectious disease vaccines, regenerative medicine and gene therapy. Finally, we discuss current challenges for EV therapeutics and their future development.

5.
Biosens Bioelectron ; 110: 38-43, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29587192

RESUMO

An optimum copper concentration in environment is highly desired for all forms of life. We have developed an ultrasensitive copper sensor which functions from femto to micro molar concentration accurately (R2 = 0.98). The sensor is based on denatured antibody immunoglobulin G (IgG), immobilized on polyaniline (PAni) which in turn is the coating on the core of an optical fiber. The sensing relies on changes in evanescent wave absorbance in the presence of the analyte. The sensor showed excellent selectivity towards Cu (II) ions over all other metal ions. The sensor was tested with lake and marine water samples to determine unknown concentrations of copper ions and the recovery results were within 90-115%, indicating reasonable accuracy. We further integrated the fiber-optic sensor with a miniaturized hand-held instrumentation platform to develop an accurate and field deployable device which can broadly be applicable to determine Cu (II) concentration in a wide range of systems - natural water bodies, soil as well as blood serum.


Assuntos
Compostos de Anilina/química , Anticorpos Imobilizados/química , Técnicas Biossensoriais/instrumentação , Cobre/análise , Cobre/sangue , Tecnologia de Fibra Óptica/instrumentação , Água Doce/análise , Técnicas Biossensoriais/métodos , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Desenho de Equipamento , Tecnologia de Fibra Óptica/métodos , Humanos , Imunoglobulina G/química , Limite de Detecção , Desnaturação Proteica , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA