Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 18(3): e1010077, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35245283

RESUMO

Ovule initiation determines the maximum ovule number and has great impact on seed number and yield. However, the regulation of ovule initiation remains largely elusive. We previously reported that most of the ovule primordia initiate asynchronously at floral stage 9 and PINFORMED1 (PIN1) polarization and auxin distribution contributed to this process. Here, we further demonstrate that a small amount of ovule primordia initiate at floral stage 10 when the existing ovules initiated at floral stage 9 start to differentiate. Genetic analysis revealed that the absence of PIN3 function leads to the reduction in pistil size and the lack of late-initiated ovules, suggesting PIN3 promotes the late ovule initiation process and pistil growth. Physiological analysis illustrated that, unlike picloram, exogenous application of NAA can't restore these defective phenotypes, implying that PIN3-mediated polar auxin transport is required for the late ovule initiation and pistil length. qRT-PCR results indicated that the expression of SEEDSTICK (STK) is up-regulated under auxin analogues treatment while is down-regulated in pin3 mutants. Meanwhile, overexpressing STK rescues pin3 phenotypes, suggesting STK participates in PIN3-mediated late ovule initiation possibly by promoting pistil growth. Furthermore, brassinosteroid influences the late ovule initiation through positively regulating PIN3 expression. Collectively, this study demonstrates that PIN3 promotes the late ovule initiation and contributes to the extra ovule number. Our results give important clues for increasing seed number and yield of cruciferous and leguminous crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Domínio MADS/genética , Óvulo Vegetal/genética
2.
J Integr Plant Biol ; 64(3): 702-716, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34837335

RESUMO

Ovule initiation is a key step that strongly influences ovule number and seed yield. Notably, mutants with enhanced brassinosteroid (BR) and cytokinin (CK) signaling produce more ovules and have a higher seed number per silique (SNS) than wild-type plants. Here, we crossed BR- and CK-related mutants to test whether these phytohormones function together in ovule initiation. We determined that simultaneously enhancing BR and CK contents led to higher ovule and seed numbers than enhancing BR or CK separately, and BR and CK enhanced each other. Further, the BR-response transcription factor BZR1 directly interacted with the CK-response transcription factor ARABIDOPSIS RESPONSE REGULATOR1 (ARR1). Treatments with BR or BR plus CK strengthened this interaction and subsequent ARR1 targeting and induction of downstream genes to promote ovule initiation. Enhanced CK signaling partially rescued the reduced SNS phenotype of BR-deficient/insensitive mutants whereas enhanced BR signaling failed to rescue the low SNS of CK-deficient mutants, suggesting that BR regulates ovule initiation and SNS through CK-mediated and -independent pathways. Our study thus reveals that interaction between BR and CK promotes ovule initiation and increases seed number, providing important clues for increasing the seed yield of dicot crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Brassinosteroides/farmacologia , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Sementes/genética , Sementes/metabolismo
3.
Front Plant Sci ; 10: 980, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31404166

RESUMO

Brassinosteroid (BR) is a family of bioactive steroid hormones that plays vital roles in plant growth and development. The BR-mediated regulation of plant growth and architecture has been well studied. However, relatively few studies have investigated the BR-related regulation of reproductive development because of the difficulties in excluding non-specific regulation and secondary responses from severe vegetative phenotypes and poor nutritional status. Furthermore, differentially regulating the BR signal in vegetative and reproductive organs is problematic. Thus, establishing a method for modulating the BR signal only in reproductive organs or during reproductive developmental stages will be beneficial. Additionally, the utility of BR applications for crop production is limited because of deleterious side-effects, including the associated decrease in the planting density and lodging resistance. Moreover, enhancing the BR signal may lead to feedback inhibition. In this study, we developed a transformation system for modulating the BR signal differentially during reproductive and vegetative developmental stages. This system involves transformations with different combinations of a reproductive tissue-specific promoter, coding sequences that increase or decrease the BR signal, and various genotypic backgrounds with enhanced or decreased BR signals. The enhanced BR signal generated in transformants was targeted to reproductive organs without affecting vegetative organs. This system may be useful for studying the BR-specific regulation of plant reproductive development and shows promise for optimizing seed yield.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA