RESUMO
Alport syndrome (AS) is a progressive hereditary kidney disease characterized by hematuria, proteinuria, and progressive kidney dysfunction accompanied by sensorineural hearing loss and ocular abnormalities. Pathogenic COL4A3-5 variants can result in different AS spectra. Further, kidney cysts have been reported in adults with AS. However, the relationship between kidney cysts and AS remains unclear. Here, we report 3 cases of AS in children that occurred with kidney cysts. The patient in case 1 was initially diagnosed with IgA nephropathy at the age of 8 years but later developed bilateral multiple kidney cysts at the age of 17 years, suggesting autosomal-dominant polycystic kidney disease. Whole-exome sequencing identified a pathogenic COL4A5 variant and confirmed the AS diagnosis. The patients in cases 2 and 3 had already been diagnosed with X-linked AS using kidney biopsy and genetic analysis. Initial kidney ultrasonography showed nephromegaly; however, kidney cyst formation was observed during their annual follow-up. Our study supports the association between AS and kidney cysts. Kidney cysts in adolescents with suspected AS should not discourage clinicians from testing for pathogenic COL4A3-COL4A5 variants. Early detection of kidney cysts is critical because it may indicate kidney disease progression.
RESUMO
BACKGROUND: We clinically and genetically evaluated a Taiwanese boy presenting with developmental delay, organomegaly, hypogammaglobulinemia and hypopigmentation without osteopetrosis. Whole-exome sequencing revealed a de novo gain-of-function variant, p.Tyr715Cys, in the C-terminal domain of ClC-7 encoded by CLCN7. METHODS: Nicoli et al. (2019) assessed the functional impact of p.Tyr715Cys by heterologous expression in Xenopus oocytes and evaluating resulting currents. RESULTS: The variant led to increased outward currents, indicating it underlies the patient's phenotype of lysosomal hyperacidity, storage defects and vacuolization. This demonstrates the crucial physiological role of ClC-7 antiporter activity in maintaining appropriate lysosomal pH. CONCLUSION: Elucidating mechanisms by which CLCN7 variants lead to lysosomal dysfunction will advance understanding of genotype-phenotype correlations. Identifying modifier genes and compensatory pathways may reveal therapeutic targets. Ongoing functional characterization of variants along with longitudinal clinical evaluations will continue advancing knowledge of ClC-7's critical roles and disease mechanisms resulting from its dysfunction. Expanded cohort studies are warranted to delineate the full spectrum of associated phenotypes.