Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612492

RESUMO

The excavation and utilization of dormancy loci in breeding are effective endeavors for enhancing the resistance to pre-harvest sprouting (PHS) of wheat varieties. CH1539 is a wheat breeding line with high-level seed dormancy. To clarify the dormant loci carried by CH1539 and obtain linked molecular markers, in this study, a recombinant inbred line (RIL) population derived from the cross of weak dormant SY95-71 and strong dormant CH1539 was genotyped using the Wheat17K single-nucleotide polymorphism (SNP) array, and a high-density genetic map covering 21 chromosomes and consisting of 2437 SNP markers was constructed. Then, the germination percentage (GP) and germination index (GI) of the seeds from each RIL were estimated. Two QTLs for GP on chromosomes 5A and 6B, and four QTLs for GI on chromosomes 5A, 6B, 6D and 7A were identified. Among them, the QTL on chromosomes 6B controlling both GP and GI, temporarily named QGp/Gi.sxau-6B, is a major QTL for seed dormancy with the maximum phenotypic variance explained of 17.66~34.11%. One PCR-based diagnostic marker Ger6B-3 for QGp/Gi.sxau-6B was developed, and the genetic effect of QGp/Gi.sxau-6B on the RIL population and a set of wheat germplasm comprising 97 accessions was successfully confirmed. QGp/Gi.sxau-6B located in the 28.7~30.9 Mbp physical position is different from all the known dormancy loci on chromosomes 6B, and within the interval, there are 30 high-confidence annotated genes. Our results revealed a novel QTL QGp/Gi.sxau-6B whose CH1539 allele had a strong and broad effect on seed dormancy, which will be useful in further PHS-resistant wheat breeding.


Assuntos
Dormência de Plantas , Locos de Características Quantitativas , Dormência de Plantas/genética , Triticum/genética , Melhoramento Vegetal , Alelos
2.
Mol Breed ; 42(10): 66, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37313009

RESUMO

Wheat grain yield is affected by plant height, which is the total length of spike, the uppermost internode, and other elongated internodes. In this study, a population of recombinant inbred lines generated from a cross between two advanced winter wheat breeding lines were phenotyped over four locations/years and genotyped by using markers of genotyping-by-sequencing (GBS) and Diversity Array Technology (DArT) for mapping of genes for three traits, including spike length, the uppermost internode length, and plant height. Five genomic regions or quantitative trait loci (QTLs) were associated with candidate genes for these traits. A major QTL was associated with Q5A, and two novel haplotypes of Q5A were identified, one for a single nucleotide polymorphism (SNP) at position -2,149 in promoter region and the other for copy number variation. Compared with one copy Q5A on chromosome 5A in Chinese Spring, the novel haplotype of Q5A with two copies Q5A was found to generate spikes that are extremely compacted. A major QTL was associated with allelic variation in the recessive vrn-A1 alleles involving in protein sequences, and this QTL was associated with increased uppermost internode length but not with plant height. A major QTL for plant height was associated with Rht-B1b on chromosome 4B, but its effects could be compromised by two new minor QTLs on chromosome 7. Collectively, the favorable alleles from the four loci can be used to establish the optimal plant height in wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01336-2.

3.
Mol Breed ; 42(9): 52, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37313422

RESUMO

Leaf rust (LR), caused by Puccinia triticina (Pt), is one of the most important fungal diseases of wheat worldwide. The wheat accession CH1539 showed a high level of resistance to leaf rust. A mapping population of 184 recombinant inbred lines (RILs) was developed from a cross between the resistant accession CH1539 and the susceptible cultivar SY95-71. The RILs showed segregating infection responses to Puccinia triticina Eriks. (Pt) race THK at the seedling stage. Genetic analysis showed that leaf rust resistance was controlled by a monogenic gene, and the potential locus was temporarily named LrCH1539. Bulked segregant analysis (BSA) using a 35 K DArTseq array located LrCH1539 on the short arm of chromosome 2B. Subsequently, a genetic linkage map of LrCH1539 was constructed using the developed 2BS chromosome-specific markers, and its flanking markers were sxau-2BS136 and sxau-2BS81. An F2 subpopulation with 3619 lines was constructed by crossing the resistant and susceptible lines selected from the RIL population. The inoculation identification results showed that LrCH1539 was recessively inherited and was fine-mapped to a 779.4-kb region between markers sxau-2BS47 and sxau-2BS255 at the end of 2BS. The linkage marker analysis showed that the positions of LrCH1539 and Lr16 were the same, but the identification results of the resistance spectrum indicated that the causal genes of the two might be different. The resistant materials reported in this study and the cosegregation marker can be used for marker-assisted selection breeding of leaf rust-resistant wheat cultivars. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01318-4.

4.
Planta ; 250(1): 129-143, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30944981

RESUMO

MAIN CONCLUSION: In wheat, a QTL QTrl.saw-2D.2 associated with the total root length was identified, presumably containing genes closely related to root development. A mapping population of 184 recombinant inbred lines derived from the cross SY95-71 × CH7034 was used to map QTL for seedling root characteristics in hydroponic culture (HC) and in soil-filled pot (SP) methods. Four traits, including maximum root length (MRL), root number (RN), total length (TRL), and root diameter (RD) were measured and used in QTL analyses. A total of 33 QTL for the four root traits were detected, 17 QTLs for TRL, six for RN, seven for MRL, and three for RD. Seven QTL were detected in both HC and SP methods, which explained 7-18% phenotypic variation. One QTL QTrl.saw-2D.2 detected in both HC and SP methods was also validated in another population comprised of 215 diverse lines. This QTL is a novel QTL that explained the highest phenotypic variation 18% in all QTL identified in the present study. Based on candidate gene and comparative genomics analyses, the QTL QTrl.saw-2D.2 may contain genes closely related to root development in wheat (Triticum aestivum L.). The two candidate genes were proposed to explore in future studies.


Assuntos
Locos de Características Quantitativas/genética , Triticum/genética , Mapeamento Cromossômico , Secas , Ligação Genética , Estudo de Associação Genômica Ampla , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Triticum/crescimento & desenvolvimento , Triticum/fisiologia
5.
J Mol Evol ; 85(3-4): 107-119, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29085968

RESUMO

The Aux/IAA (IAA) gene family, involved in the auxin signalling pathway, acts as an important regulator in plant growth and development. In this study, we explored the evolutionary trajectory of the IAA family in common wheat. The results showed ten pairs of paralogs among 34 TaIAA family members. Seven of the pairs might have undergone segmental duplication, and the other three pairs appear to have experienced tandem duplication. Except for TaIAA15-16, these duplication events occurred in the ancestral genomes before the divergence of Triticeae. After that point, two polyploidization events shaped the current TaIAA family consisting of three subgenomic copies. The structure or expression pattern of the TaIAA family begins to differentiate in the hexaploid genome, where TaIAAs in the D genome lost more genes (eight) and protein secondary structures (α1, α3 and ß5) than did the other two genomes. Expression analysis showed that six members of the TaIAA family were not expressed, and members such as TaIAA8, 15, 16, 28 and 33 exhibited tissue-specific expression patterns. In addition, three of the ten pairs of paralogs (TaIAA5-12, TaIAA15-16 and TaIAA29-30) showed similar expression patterns, and another five paralog pairs displayed differential expression patterns. Phylogenetic analysis showed that paralog pairs with high rates of evolution (ω > ω 0), particularly TaIAA15-16 and TaIAA29-30, experienced greater motif loss, with only zero to two interacting IAA proteins. In contrast, most paralogous genes with low ω, such as TaIAA5-12, had more complete motifs and higher degrees of interaction with other family members.


Assuntos
Evolução Molecular , Ácidos Indolacéticos/metabolismo , Família Multigênica , Transdução de Sinais , Triticum/metabolismo , Duplicação Gênica , Genes de Plantas , Poliploidia , Triticum/genética
6.
Plant Dis ; 100(8): 1717-1724, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30686226

RESUMO

Wheat is one of the major food crops in the world. Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an economically important disease that affects wheat worldwide. The discovery of novel resistance genes and the deployment of effectively resistant cultivars are important for the ongoing control of wheat stripe rust and the maintenance of the agricultural productivity of wheat. CH7086, a new stripe rust-resistant wheat introgression line, was selected by crossing susceptible cultivars with the resistant Thinopyrum ponticum-derived partial amphiploid Xiaoyan 7430. The resistance of CH7086 is effective against all current Chinese P. striiformis f. sp. tritici races. CH7086 was crossed with the stripe rust-susceptible cultivars to develop F1, F2, F3, and BC1 populations for genetic analysis. Segregation in the F2 and BC1 populations and F2:3 lines were tested for resistance against the P. striiformis f. sp. tritici race CYR32. This test showed that CH7086 carries a single dominant gene for stripe rust resistance, which was temporarily designated YrCH86. The closest of the eight simple sequence repeat (SSR) and expressed sequence tag-SSR markers flanking the locus were X2AS33, which is 1.9 cM distal, and Xmag3807, which is 3.1 cM proximal. The resistance gene and its polymorphic markers were placed in deletion bin 2AS-0.78-1.00 using the 'Chinese Spring' nullisomic-tetrasomic, ditelosomic, and deletion lines. The tests of both allelism and resistance specificity suggested that the resistance gene found in CH7086 was not Yr17, which was the only current formally named Yr gene on chromosome 2AS. Thus, YrCH86 appeared to be a new locus and was permanently designated Yr69.

7.
BMC Plant Biol ; 15: 239, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26444258

RESUMO

BACKGROUND: Stripe rust, a highly destructive foliar disease of wheat (Triticum aestivum), causes severe losses, which may be accompanied by reduced photosynthetic activity and accelerated leaf senescence. METHODS: We used suppression subtractive hybridization (SSH) to examine the mechanisms of resistance in the resistant wheat line L693 (Reg. No. GP-972, PI 672538), which was derived from a lineage that includes a wide cross between common and Thinopyrum intermedium. Sequencing of an SSH cDNA library identified 112 expressed sequence tags. RESULTS: In silico mapping placed one of these tags [GenBank: JK972238] on chromosome 1A. Primers based on [GenBank: JK972238] amplified a polymorphic band, which co-segregated with YrL693. We cloned a candidate gene encoding wheat copper-binding protein (WCBP1) by amplifying the polymorphic region, and we mapped WCBP1 to a 0.64 cM genetic interval. Brachypodium, rice, and sorghum have genes and genomic regions syntenic to this region. DISCUSSION: Sequence analysis suggested that the resistant WCBP1 allele might have resulted from a deletion of 36-bp sequence of the wheat genomic sequence, rather than direct transfer from Th. intermedium. qRT-PCR confirmed that WCBP1 expression changes in response to pathogen infection. CONCLUSIONS: The unique chromosomal location and expression mode of WCBP1 suggested that WCBP1 is the putative candidate gene of YrL693, which was involved in leaf senescence and photosynthesis related to plant responses to stripe rust infection during the grain-filling stage.


Assuntos
Proteínas de Transporte/metabolismo , Resistência à Doença , Doenças das Plantas/microbiologia , Folhas de Planta/fisiologia , Triticum/imunologia , Triticum/microbiologia , Sequência de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Clorofila/metabolismo , Segregação de Cromossomos , Clonagem Molecular , Etiquetas de Sequências Expressas , Fluorescência , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ligação Genética , Genótipo , Dados de Sequência Molecular , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Filogenia , Mapeamento Físico do Cromossomo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase , Polimorfismo Genético , Pseudomonas syringae/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Plântula/microbiologia , Triticum/genética
8.
Int J Mol Sci ; 16(8): 17231-44, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26225967

RESUMO

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a globally serious disease adversely affecting wheat production. The Bgt-resistant wheat breeding line CH09W89 was derived after backcrossing a Bgt resistant wheat-Thinopyrum intermedium partial amphiploid TAI7045 with susceptible wheat cultivars. At the seedling stage, CH09W89 exhibited immunity or high resistance to Bgt pathotypes E09, E20, E21, E23, E26, Bg1, and Bg2, similar to its donor line TAI7045 and Th. intermedium. No Th. intermedium chromatin was detected based on genomic in situ hybridization of mitotic chromosomes. To determine the mode of inheritance of the Bgt resistance and the chromosomal location of the resistance gene, CH09W89 was crossed with two susceptible wheat cultivars. The results of the genetic analysis showed that the adult resistance to Bgt E09 in CH09W89 was controlled by a single recessive gene, which was tentatively designated as pmCH89. Two polymorphic SSR markers, Xwmc310 and Xwmc125, were linked to the resistance gene with genetic distances 3.1 and 2.7 cM, respectively. Using the Chinese Spring aneuploid and deletion lines, the resistance gene and its linked markers were assigned to chromosome arm 4BL in the bin 0.68-0.78. Due to its unique position on chromosome 4BL, pmCH89 appears to be a new locus for resistance to powdery mildew. These results will be of benefit for improving powdery mildew resistance in wheat breeding programs.


Assuntos
Cromossomos de Plantas/genética , Genes de Plantas , Imunidade Vegetal/genética , Triticum/genética , Aneuploidia , Ascomicetos/patogenicidade , Hibridização Genética , Triticum/imunologia , Triticum/microbiologia
9.
Int J Mol Sci ; 16(1): 2162-73, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25608651

RESUMO

A new wheat-Thinopyrum translocation line CH13-21 was selected from the progenies derived from a cross between wheat-Th. intermedium partial amphiploid TAI7047 and wheat line Mianyang11. CH13-21 was characterized by using genomic in situ hybridization (GISH), multicolor-GISH (mc-GISH), multicolor-fluorescence in situ hybridization (mc-FISH) and chromosome-specific molecular markers. When inoculated with stripe rust and powdery mildew isolates, CH13-21 displayed novel resistance to powdery mildew and stripe rust which inherited from its Thinopyrum parent. The chromosomal counting analyses indicated that CH13-21 has 42 chromosomes, with normal bivalent pairing at metaphase I of meiosis. GISH probed by Th. intermedium genomic DNA showed that CH13-21 contained a pair of wheat-Th. intermedium translocated chromosomes. Sequential mc-FISH analyses probed by pSc119.2 and pAs1 clearly revealed that chromosome arm 6BS of CH13-21 was replaced by Thinopyrum chromatin in the translocation chromosome. The molecular markers analysis further confirmed that the introduced Th. intermedium chromatin in CH13-21 belonged to the long arm of homoeologous group 6 chromosome. Therefore, CH13-21 was a new T6BS.6Ai#1L compensating Robertsonian translocation line. It concludes that CH13-21 is a new genetic resource for wheat breeding programs providing novel variation for disease resistances.


Assuntos
Ascomicetos/fisiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Translocação Genética/genética , Triticum/genética , Triticum/microbiologia , Cromossomos de Plantas/genética , Marcadores Genéticos , Genoma de Planta , Hibridização in Situ Fluorescente , Doenças das Plantas/imunologia , Reação em Cadeia da Polimerase , Triticum/citologia , Triticum/imunologia
10.
Plants (Basel) ; 13(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256827

RESUMO

Soil salinization is the main abiotic stressor faced by crops. An improved understanding of the transcriptional response to salt stress in roots, the organ directly exposed to a high salinity environment, can inform breeding strategies to enhance tolerance and increase crop yield. Here, RNA-sequencing was performed on the roots of salt-tolerant wheat breeding line CH7034 at 0, 1, 6, 24, and 48 h after NaCl treatment. Based on transcriptome data, a weighted gene co-expression network analysis (WGCNA) was constructed, and five gene co-expression modules were obtained, of which the blue module was correlated with the time course of salt stress at 1 and 48 h. Two GO terms containing 249 differentially expressed genes (DEGs) related to osmotic stress response and salt-stress response were enriched in the blue module. These DEGs were subsequently used for association analysis with a set of wheat germplasm resources, and the results showed that four genes, namely a Walls Are Thin 1-related gene (TaWAT), an aquaporin gene (TaAQP), a glutathione S-transfer gene (TaGST), and a zinc finger gene (TaZFP), were associated with the root salt-tolerance phenotype. Using the four candidate genes as hub genes, a co-expression network was constructed with another 20 DEGs with edge weights greater than 0.6. The network showed that TaWAT and TaAQP were mainly co-expressed with fifteen interacting DEGs 1 h after salt treatment, while TaGST and TaZFP were mainly co-expressed with five interacting DEGs 48 h after salt treatment. This study provides key modules and candidate genes for understanding the salt-stress response mechanism in wheat roots.

11.
Theor Appl Genet ; 126(1): 265-74, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23052018

RESUMO

Stripe rust-resistant wheat introgression line CH223 was developed by crossing the resistant partial amphiploid TAI7047 derived from Thinopyrum intermedium with susceptible cultivars. The resistance is effective against all the existing Chinese stripe rust races, including the most widely virulent and predominant pathotypes CYR32 and CYR33. Cytological analyses using GISH detected no chromosomal segments from Th. intermedium. It was presumed that the segment was too small to be detected. Normal bivalent pairing at meiosis in CH223 and its hybrids confirmed its stability. Genetic analysis of the F(1), F(2), F(3) and BC(1) populations from crosses of CH223 with susceptible lines indicated that resistance was controlled by a single dominant gene. The resistance gene was mapped using an F(2:3) population from Taichung 29/CH223. The gene was linked to five co-dominant genomic SSR markers, Xgwm540, Xbarc1096, Xwmc47, Xwmc310 and Xgpw7272, and flanked by Xbarc1096 and Xwmc47 at 8.0 and 7.2 cM, respectively. Using the Chinese Spring nulli-tetrasomic and ditelosomic lines, the polymorphic markers and the resistance gene were assigned to chromosome arm 4BL. As no permanently named stripe rust resistance genes had been assigned to chromosome 4BL, this new resistance gene is designated Yr50. The gene, together with the identified closely linked markers, could be used in marker-assisted selection to combine two or more resistance genes in a single genotype.


Assuntos
Mapeamento Cromossômico/métodos , Triticum/genética , Alelos , Basidiomycota/genética , Basidiomycota/imunologia , Cromatina/metabolismo , Cromossomos/ultraestrutura , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Citogenética , Genes de Plantas , Ligação Genética , Marcadores Genéticos , Genótipo , Hibridização In Situ , Repetições de Microssatélites/genética , Modelos Genéticos , Polimorfismo Genético
12.
Front Plant Sci ; 13: 892642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592560

RESUMO

The number of spikelets per spike is an important trait that directly affects grain yield in wheat. Three quantitative trait loci (QTLs) associated with spikelet nodes per spike (SNS) were mapped in a population of recombinant inbred lines generated from a cross between two advanced breeding lines of winter wheat based on the phenotypic variation evaluated over six locations/years. Two of the three QTLs are QSns.sxau-2A at the WHEATFRIZZY PANICLE (WFZP) loci and QSns.sxau-7A at the WHEAT ORTHOLOG OF APO1 (WAPO1) loci. The WFZP-A1b allele with a 14-bp deletion at QSns.sxau-2A was associated with increased spikelets per spike. WAPO-A1e, as a novel allele at WAPO1, were regulated at the transcript level that was associated with the SNS trait. The third SNS QTL, QSns.sxau-7D on chromosome 7D, was not associated with homoeologous WAPO-D1 or any other genes known to regulate SNS. The favorable alleles for each of WZFP-A1, WAPO-A1, and QSns.sxau-7D are identified and incorporated to increase up to 3.4 spikelets per spike in the RIL lines. Molecular markers for the alleles were developed. This study has advanced our understanding of the genetic basis of natural variation in spikelet development in wheat.

13.
Front Plant Sci ; 13: 1006281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147230

RESUMO

Thinopyrum intermedium (JJJsJsStSt, 2n = 6x = 42), a member of tertiary gene pool of hexaploid wheat (Triticum aestivum L., AABBDD, 2n = 6x = 42), provides several beneficial genes for wheat improvement. In this study, line CH51 was developed from the BC1F8 progeny of a partial wheat-Th. intermedium amphiploid TAI8335 (2n = 56) and wheat cultivar (cv.) Jintai 170. Somatic metaphase chromosome counting showed that CH51 had stable 42 chromosomes. Genomic in situ hybridization (GISH) analysis showed that CH51 had 40 wheat chromosomes and two Th. intermedium chromosomes involving translocation between Js- and St-genome chromosomes. Non-denaturing fluorescence in situ hybridization (ND-FISH) analysis revealed that CH51 lacked a pair of wheat chromosome 6B. Wheat 55K SNP array analysis verified that chromosome 6B had the highest percentage of missing SNP loci in both CH51 and Chinese Spring (CS) nullisomic 6B-tetrasomic 6D (CS-N6BT6D) and had the highest percentage of polymorphic SNP loci between CH51 and cv. Jintai 170. We identified that CH51 was a wheat-Th. intermedium T6StS.6JsL (6B) disomic substitution line. Disease resistance assessment showed that CH51 exhibited high levels of resistance to the prevalent Chinese leaf rust and stripe rust races in the field. Therefore, the newly developed line CH51 can be utilized as a potential germplasm in wheat disease resistance breeding.

14.
Artigo em Inglês | MEDLINE | ID: mdl-33916395

RESUMO

For a better environment and sustainable development of China, it is indispensable to unravel how urban forms (UF) affect the fine particulate matter (PM2.5) concentration. However, research in this area have not been updated consider multiscale and spatial heterogeneities, thus providing insufficient or incomplete results and analyses. In this study, UF at different scales were extracted and calculated from remote sensing land-use/cover data, and panel data models were then applied to analyze the connections between UF and PM2.5 concentration at the city and provincial scales. Our comparison and evaluation results showed that the PM2.5 concentration could be affected by the UF designations, with the largest patch index (LPI) and landscape shape index (LSI) the most influential at the provincial and city scales, respectively. The number of patches (NP) has a strong negative influence (-0.033) on the PM2.5 concentration at the provincial scale, but it was not statistically significant at the city scale. No significant impact of urban compactness on the PM2.5 concentration was found at the city scale. In terms of the eastern and central provinces, LPI imposed a weighty positive influence on PM2.5 concentration, but it did not exert a significant effect in the western provinces. In the western cities, if the urban layout were either irregular or scattered, exposure to high PM2.5 pollution levels would increase. This study reveals distinct ties of the different UF and PM2.5 concentration at the various scales and helps to determine the reasonable UF in different locations, aimed at reducing the PM2.5 concentration.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Cidades , Monitoramento Ambiental , Material Particulado/análise
15.
Front Plant Sci ; 12: 685216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249056

RESUMO

Thinopyrum intermedium (2n = 6x = 42, JJJSJSStSt) is one of the important resources for the wheat improvement. So far, a few Th. intermedium (Thi)-specific molecular markers have been reported, but the number is far from enough to meet the need of identifying alien fragments in wheat-Th. intermedium hybrids. In this study, 5,877,409 contigs were assembled using the Th. intermedium genotyping-by-sequencing (GBS) data. We obtained 5,452 non-redundant contigs containing mapped Thi-GBS markers with less than 20% similarity to the wheat genome and developed 2,019 sequence-tagged site (STS) molecular markers. Among the markers designed, 745 Thi-specific markers with amplification products in Th. intermedium but not in eight wheat landraces were further selected. The distribution of these markers in different homologous groups of Th. intermedium varied from 47 (7/12/28 on 6J/6St/6JS) to 183 (54/62/67 on 7J/7St/7JS). Furthermore, the effectiveness of these Thi-specific markers was verified using wheat-Th. intermedium partial amphidiploids, addition lines, substitution lines, and translocation lines. Markers developed in this study provide a convenient, rapid, reliable, and economical method for identifying Th. intermedium chromosomes in wheat. In addition, this set of Thi-specific markers can also be used to estimate genetic and physical locations of Th. intermedium chromatin in the introgression lines, thus providing valuable information for follow-up studies such as alien gene mining.

16.
Hereditas ; 147(6): 304-12, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21166800

RESUMO

Partial amphiploids between wheat (Triticum aestivum L.) and Thinopyrum species play an important role in the transfer and use of traits from alien species. A wheat-Thinopyrum intermedium partial amphiploid, TAI8335, and its alien parent were characterized by a combination of genomic in situ hybridization (GISH) and cytological observations. Evidence from GISH indicated that the donor parent Th. intermedium possessed seven pairs of S, seven J(s) and 21 J chromosomes. Mitotic observation showed that the majority of TAI8335 plants had 56 chromosomes, but a few had 54 to 55, in some cases with two to three additional telochromosomes. The chromosomes in most pollen mother cells of plants with 2n = 56 formed 28 bivalents, averaging 27.12 in 223 cells, suggesting a basic cytological stability. Sequential GISH patterns using genomic Pseudoroegneria spicata and genomic Th. intermedium DNA as probes revealed that TAI8335 had fourteen chromosomes derived from Th. intermedium and its alien genome consisted of one pair of S-, three pairs of J(s) - and one pair of J-genome chromosomes as well as two translocated chromosome pairs, one being a Robertsonian translocation and another an intercalary translocation, both of which involved J and S genome. Two of the telochromosomes in the aneuploid plants originated from the J genome and one from wheat. Disease screening demonstrated this line was highly resistant to leaf rust, stem rust, stripe rust and powdery mildew. This study showed that the partial amphiploid TAI8335 appears to serve as a novel source for the transfer of resistance genes for multiple fungal pathogens to wheat.


Assuntos
DNA de Plantas/genética , Elymus/genética , Fungos , Hibridização Genética , Triticum/genética , Cromossomos de Plantas , Elymus/microbiologia , Imunidade Inata , Hibridização In Situ , Hibridização de Ácido Nucleico , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Triticum/microbiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-32102480

RESUMO

Currently, whether the urban development in China satisfies Zipf's law across different scales is still unclear. Thus, this study attempted to explore whether China's urban development satisfies Zipf's law across different scales from the National Polar-Orbiting Partnership's Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) nighttime light data. First, the NPP-VIIRS data were corrected. Then, based on the Zipf law model, the corrected NPP-VIIRS data were used to evaluate China's urban development at multiple scales. The results showed that the corrected NPP-VIIRS data could effectively reflect the state of urban development in China. Additionally, the Zipf index (q) values, which could express the degree of urban development, decreased from 2012 to 2018 overall in all provinces, prefectures, and counties. Since the value of q was relatively close to 1 with an R2 value > 0.70, the development of the provinces and prefectures was close to the ideal Zipf's law state. In all counties, q > 1 with an R2 value > 0.70, which showed that the primate county had a relatively stronger monopoly capacity. When the value of q < 1 with a continuous declination in the top 2000 counties, the top 250 prefectures, and the top 20 provinces in equilibrium, there was little difference in the scale of development at the multiscale level with an R2 > 0.90. The results enriched our understanding of urban development in terms of Zipf's law and had valuable implications for relevant decision-makers and stakeholders.


Assuntos
Luz , Urbanização , China
18.
Theor Appl Genet ; 118(6): 1173-80, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19214392

RESUMO

Powdery mildew resistance from Thinopyrum intermedium was introgressed into common wheat (Triticum aestivum L.). Genetic analysis of the F(1), F(2), F(3) and BC(1) populations from powdery mildew resistant line CH5025 revealed that resistance was controlled by a single dominant allele. The gene responsible for powdery mildew resistance was mapped by the linkage analysis of a segregating F(2) population. The resistance gene was linked to five co-dominant genomic SSR markers (Xcfd233, Xwmc41, Xbarc11, Xgwm539 and Xwmc175) and their most likely order was Xcfd233-Xwmc41-Pm43-Xbarc11-Xgwm539-Xwmc175 at 2.6, 2.3, 4.2, 3.5 and 7.0 cM, respectively. Using the Chinese Spring nullisomic-tetrasomic and ditelosomic lines, the polymorphic markers and the resistance gene were assigned to chromosome 2DL. As no powdery mildew resistance gene was previously assigned to chromosome 2DL, this new resistance gene was designated Pm43. Pm43, together with the identified closely linked markers, could be useful in marker-assisted selection for pyramiding powdery mildew resistance genes.


Assuntos
Ascomicetos/patogenicidade , Imunidade Inata/genética , Doenças das Plantas/microbiologia , Poaceae/genética , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Ligação Genética , Marcadores Genéticos , Genótipo , Repetições de Microssatélites , Poaceae/imunologia , Poaceae/microbiologia , Polimorfismo Genético , Triticum/imunologia , Triticum/microbiologia
19.
Front Plant Sci ; 9: 1395, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283490

RESUMO

Auxin response factors (ARFs) are important transcription factors involved in both the auxin signaling pathway and the regulatory development of various plant organs. In this study, 23 TaARF members encoded by a total of 68 homeoalleles were isolated from 18 wheat chromosomes (excluding chromosome 4). The TaARFs, including their conserved domains, exon/intron structures, related microRNAs, and alternative splicing (AS) variants, were then characterized. Phylogenetic analysis revealed that members of the TaARF family share close homology with ARFs in other grass species. qRT-PCR analyses revealed that 20 TaARF members were expressed in different organs and tissues and that the expression of some members significantly differed in the roots, stems, and leaves of wheat seedlings in response to exogenous auxin treatment. Moreover, protein network analyses and co-expression results showed that TaTIR1-TaARF15/18/19-TaIAA13 may interact at both the protein and genetic levels. The results of subsequent evolutionary analyses showed that three transcripts of TaARF15 in the A subgenome of wheat exhibited high evolutionary rate and underwent positive selection. Transgenic analyses indicated that TaARF15-A.1 promoted the growth of roots and leaves of Arabidopsis thaliana and was upregulated in the overexpression plants after auxin treatment. Our results will provide reference information for subsequent research and utilization of the TaARF gene family.

20.
PLoS One ; 12(12): e0189333, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29220383

RESUMO

Flowering is crucial for reproductive success in flowering plant. The CCT domain-containing genes widely participate in the regulation of flowering process in various plant species. So far, the CCT family in common wheat is largely unknown. Here, we characterized the structure, organization, molecular evolution and expression of the CCT genes in Aegilops tauschii, which is the D genome donor of hexaploid wheat. Twenty-six CCT genes (AetCCT) were identified from the full genome of A. tauschii and these genes were distributed on all 7 chromosomes. Phylogenetic analysis classified these AetCCT genes into 10 subgroups. Thirteen AetCCT members in group A, C, H and G achieved rapid evolution based on evolutionary rate analysis. The AetCCT genes respond to different exogenous hormones and abiotic treatments, the expression of AetCCT4, 7, 8, 11, 12, 16, 17, 19, 21 and 22 showed a significant 24 h rhythm. This study may provide a reference for common wheat's evolution, domestication and evolvement rules, and also help us to understand the ecological adaptability of A. tauschii.


Assuntos
Genes de Plantas , Poaceae/química , Mapeamento Cromossômico , Evolução Molecular , Perfilação da Expressão Gênica , Luz , Filogenia , Poaceae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA