Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Chem Inf Model ; 63(17): 5529-5538, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37625148

RESUMO

Predicting adsorption energies of small molecules (e.g., OH, OOH, CO) on electrocatalysts involved in electrochemical reactions aids in accelerating the design and screening of electrocatalysts. Avoiding computationally expensive electronic structure calculations increases the speed of such predictions. Geometric and electronic descriptors have been reported to characterize the environment around surface active sites and predict adsorption energies. However, these descriptors cannot be used to predict adsorption energies of small molecules on various substrates, e.g., metal-oxide and nonmetal electrocatalysts. We compare the performance of these descriptors in predicting adsorption energies of small molecules on various electrocatalysts with adsorption energies calculated from density functional theory. We show that two recently developed machine learning algorithms, Crystal Graph Convolutional Neural Network (CGCNN) and Atomistic Line Graph Neural Network (ALIGNN), outperform the reported descriptors based on geometric (coordination number of the active site and its nearest neighbors) and electronic (the bond-energy-integrated orbitalwise coordination number, the electronegativity, and the number of valence electrons of the active site) properties in predicting the adsorption energies. Our results suggest that ALIGNN is almost always more accurate than CGCNN in adsorption energy predictions. The improvement ranges from 0.02 to 1.0 eV in the mean absolute errors (MAEs). We also compare the performance of CGCNN and ALIGNN algorithms in predicting the overpotentials of the oxygen evolution reaction occurring on various electrocatalysts with MAEs of 0.06 and 0.05 V, respectively.


Assuntos
Algoritmos , Ensaios de Triagem em Larga Escala , Adsorção , Análise por Conglomerados , Eletrônica
2.
Environ Sci Technol ; 56(5): 3267-3276, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35175742

RESUMO

An organometallic rhenium catalyst was deposited on a Ti4O7 reactive electrochemical membrane (Re/REM) for the electrocatalytic reduction of aqueous ClO4- to Cl-. Results showed increasing ClO4- reduction upon increasing cathodic potential (i.e., -0.4 to-1.7 V/SHE). A 5 mM ClO4- solution was reduced by ∼21% in a single pass (residence time ∼0.2 s) through the Re/REM at a pH of 7, with >99% Cl- selectivity and a current efficiency of ∼100%. Kinetic analysis indicated that the reaction rate constant increased from 3953 to 7128 L h-1 gRe-1 at pH values of 9 to 3, respectively, and was mass transport-limited at pH < 5. The rate constants were 2 orders of magnitude greater than reported values for an analogous catalytic system using hydrogen as an electron donor. A continuous flow Re/REM system reduced 1 ppm ClO4- in a groundwater sample by >99.9% for the first 93.5 h, and concentrations were lower than the EPA ClO4- guideline (56 ppb) for 374 h of treatment. The fast ClO4- reduction kinetics and high chloride selectivity without the need for acidic conditions and a continual hydrogen electron donor supply for catalyst regeneration indicate the promising ability of the Re/REM for aqueous electrocatalytic ClO4- treatment.


Assuntos
Rênio , Poluentes Químicos da Água , Cloretos , Hidrogênio , Cinética , Oxirredução , Percloratos , Titânio , Água , Poluentes Químicos da Água/análise
3.
Acc Chem Res ; 52(3): 596-604, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30768240

RESUMO

Growing worldwide population, climate change, and decaying water infrastructure have all contributed to a need for a better water treatment and conveyance model. Distributed water treatment is one possible solution, which relies on the local treatment of water from various sources to a degree dependent on its intended use and, finally, distribution to local consumers. This distributed, fit-for-purpose water treatment strategy requires the development of new modular point-of-use and point-of-entry technologies to bring this idea to fruition. Electrochemical technologies have the potential to contribute to this vision, as they have several advantages over established water treatment technologies. Electrochemical technologies have the ability to simultaneously treat multiple classes of contaminants through the in situ production of chemicals at the electrode surfaces with low power and energy demands, thereby allowing the construction of compact, modular water treatment technologies that require little maintenance and can be easily automated or remotely controlled. In addition, these technologies offer the opportunity for energy recovery through production of fuels at the cathode, which can further reduce their energy footprint. In spite of these advantages, there are several challenges that need to be overcome before widespread adoption of electrochemical water treatment technologies is possible. This Account will focus primarily on destructive electrolytic technologies that allow for removal of water contaminants without the need for residual treatment or management. Most important to the development of destructive electrochemical technologies is a need to fabricate nontoxic, inexpensive, high-surface-area electrodes that have a long operational life and can operate without the production of unwanted toxic byproducts. Overcoming these barriers will decrease the capital costs of water treatment and allow the development of the point-of-use and point-of-entry technologies that are necessary to promote more sustainable water treatment solutions. However, to accomplish this goal, a reprioritization of research is needed. Current research is primarily focused on investigating individual contaminant transformation pathways and mechanisms. While this research is important for understanding these technologies, additional work is needed in developing inexpensive, high-surface-area, stable electrode materials, minimizing toxic byproduct formation, and determining the life cycle and technoeconomic analyses necessary for commercialization. Better understanding of these critical research areas will allow for strategic deployment of electrochemical water treatment technologies to promote a more sustainable future.

4.
Environ Sci Technol ; 54(19): 12673-12683, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32841010

RESUMO

This research investigated chlorinated byproduct formation at Ti4O7 anodes. Resorcinol was used as a model organic compound representative of reactive phenolic groups in natural organic matter and industrial phenolic contaminants and was oxidized in the presence of NaCl (0-5 mM). Resorcinol mineralization was >68% in the presence and absence of NaCl at 3.1 V/SHE (residence time = 13 s). Results indicated that ∼4.3% of the initial chloride was converted to inorganic byproducts (free Cl2, ClO2-, ClO3-) in the absence of resorcinol, and this value decreased to <0.8% in the presence of resorcinol. Perchlorate formation rates from chlorate oxidation were 115-371 mol m-2 h-1, approximately two orders of magnitude lower than reported values for boron-doped diamond anodes. Liquid chromatography-mass spectroscopy detected two chlorinated organic products. Multichlorinated alcohol compounds (C3H2Cl4O and C3H4Cl4O) at 2.5 V/SHE and a monochlorinated phenolic compound (C8H7O4Cl) at 3.1 V/SHE were proposed as possible structures. Density functional theory calculations estimated that the proposed alcohol products were resistant to direct oxidation at 2.5 V/SHE, and the C8H7O4Cl compound was likely a transient intermediate. Chlorinated byproducts should be carefully monitored during electrochemical advanced oxidation processes, and multibarrier treatment approaches are likely necessary to prevent halogenated byproducts in the treated water.


Assuntos
Titânio , Poluentes Químicos da Água , Boro , Diamante , Eletrodos , Oxirredução , Poluentes Químicos da Água/análise
5.
Environ Sci Technol ; 54(23): 14815-14829, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33191730

RESUMO

Electrochemical treatment systems have the unique ability to completely mineralize poly- and perfluoroalkyl substances (PFASs) through potential-driven electron transfer reactions. In this review, we discuss the state-of-the-art on electrooxidation of PFASs in water, aiming at elucidating the impact of different operational and design parameters, as well as reported mechanisms of PFAS degradation at the anode surface. We have identified several shortcomings of the existing studies that are largely limited to small-scale laboratory batch systems and unrealistic synthetic solutions, which makes extrapolation of the obtained data to real-world applications difficult. PFASs are surfactant molecules, which display significant concentration-dependence on adsorption, electrosorption, and dissociation. Electrooxidation experiments conducted with high initial PFAS concentration and/or in high conductivity supporting electrolytes likely overestimate process performance. In addition, the formation of organohalogen byproducts, chlorate and perchlorate, was seldom considered. Nevertheless, the first step toward advancing from laboratory-scale to industrial-scale applications is recognizing both the strengths and limitations of electrochemical water treatment systems. More comprehensive and rigorous evaluation of novel electrode materials, application of scalable proof-of-concept studies, and acknowledgment of all treatment outputs (not just the positive ones) are imperative. The presence of PFASs in drinking water and in the environment is an urgent global public health issue. Developments made in material science and application of novel three-dimensional, porous electrode materials and nanostructured coatings are forging a path toward more sustainable water treatment technologies and potential chemical-free treatment of PFAS-contaminated water.


Assuntos
Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , Adsorção , Fluorocarbonos/análise , Poluentes Químicos da Água/análise
6.
Environ Sci Technol ; 54(1): 446-455, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31793293

RESUMO

This research investigated mechanisms for biofouling control at boron-doped diamond (BDD) electrode surfaces polarized at low applied potentials (e.g., -0.2 to 1.0 V vs Ag/AgCl), using Pseudomonas aeruginosa as a model organism. Results indicated that electrostatic interactions between bacteria and ionic electrode functional groups facilitated bacteria attachment at the open-circuit potential (OCP). However, under polarization, the applied potential governed these electrostatic interactions and electrochemical reactions resulted in surface bubble formation and near-surface pH modulation that decreased surface attachment under anodic conditions. The poration of the attached bacteria occurred at OCP conditions and increased with the applied potential. Scanning electrochemical microscopy (SECM) provided near-surface pH and oxidant formation measurements under anodic and cathodic polarizations. The near-surface pH was 3.1 at 1.0 V vs Ag/AgCl and 8.0 at -0.2 V vs Ag/AgCl and was possibly a contributor to bacteria poration. Interpretation of SECM data using a reactive transport model allowed for a better understanding of the near-electrode chemistry. Under cathodic conditions, the primary oxidant formed was H2O2, and under anodic conditions, a combination of H2O2, Cl•, HO2•, Cl2•-, and Cl2 formations likely contributed to bacteria poration at potentials as low as 0.5 V vs Ag/AgCl.


Assuntos
Incrustação Biológica , Peróxido de Hidrogênio , Boro , Diamante , Eletrodos
7.
Environ Sci Technol ; 54(3): 1982-1991, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31876410

RESUMO

Carbon-Ti4O7 composite reactive electrochemical membranes (REMs) were studied for adsorption and electrochemical reduction of haloacetic acids (HAAs). Powder activated carbon (PAC) or multiwalled carbon nanotubes (MWCNTs) were used in these composites. Results from flow-through adsorption experiments with dibromoacetic acid (DBAA) as a model HAA were interpreted with a transport model. It was estimated that ∼46% of C in the MWCNT-REM and ∼10% of C in the PAC-REM participated in adsorption reactions. Electrochemical reduction of 1 mg L-1 DBAA in 10 mM KH2PO4/K2HPO4 at -1.5 V/SHE (hydraulic residence time, ∼11 s) resulted in 73, 94, and 96% DBAA reduction for Ti4O7, PAC-Ti4O7, and MWCNT-Ti4O7 REMs, respectively. The reactive-transport model yielded kobs values between 9.16 and 33.3 min-1, which were 2 to 4 orders of magnitude higher than previously reported. PAC-Ti4O7 REM was tested with tap water spiked with 0.11 mg L-1 of nine different HAAs in a similar reduction experiment. The results indicated that all HAAs were reduced to <20 µg L-1. Moreover, the total combined concentration of five regulated HAAs was lower than the regulatory limit (60 µg L-1). Density functional theory simulations suggest that a direct electron transfer reaction was the probable rate-determining step for HAA reduction.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Titânio
8.
Small ; 15(49): e1904590, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31599119

RESUMO

2D layered nanomaterials have attracted considerable attention for their potential for highly efficient separations, among other applications. Here, a 2D lamellar membrane synthesized using hexagonal boron nitride nanoflakes (h-BNF) for highly efficient ion separation is reported. The ion-rejection performance and the water permeance of the membrane as a function of the ionic radius, ion valance, and solution pH are investigated. The nonfunctionalized h-BNF membranes show excellent ion rejection for small sized salt ions as well as for anionic dyes (>97%) while maintaining a high water permeability, ≈1.0 × 10-3 L m m-2 h-1 bar-1 ). Experiments show that the ion-rejection performance of the membrane can be tuned by changing the solution pH. The results also suggest that the rejection is influenced by the ionic size and the electrostatic repulsion between fixed negative charges on the BN surface and the mobile ions, and is consistent with the Donnan equilibrium model. These simple-to-fabricate h-BNF membranes show a unique combination of excellent ion selectivity and high permeability compared to other 2D membranes.

9.
Environ Sci Technol ; 53(2): 928-937, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30547581

RESUMO

This study focused on synthesis and characterization of Ti4O7 reactive electrochemical membranes (REMs) amended with powder-activated carbon (PAC) or multiwalled carbon nanotubes (MWCNTs). These composite REMs were evaluated for simultaneous adsorption and electrochemical reduction of N-nitrosodimethylamine (NDMA). The carbon-Ti4O7 composite REMs had high electrical conductivities (1832 to 2991 S m-1), where carbon and Ti4O7 were in direct electrical contact. Addition of carbonaceous materials increased the residence times of NDMA in the REMs by a factor of 3.8 to 5.4 and therefore allowed for significant electrochemical NDMA reduction. The treatment of synthetic solutions containing 10 µM NDMA achieved >4-log NDMA removal in a single pass (liquid residence time of 11 to 22 s) through the PAC-REM and MWCNT-REM with the application of a -1.1 V/SHE cathodic potential, with permeate concentrations between 18 and 80 ng L-1. The treatment of a 6.7 nM NDMA-spiked surface water sample, under similar operating conditions (liquid residence time of 22 s), achieved 92 to 97% removal with permeate concentrations between 16 and 40 ng L-1. Density functional theory calculations determined a probable reaction mechanism for NDMA reduction, where the rate-limiting step was a direct electron transfer reaction.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Dimetilnitrosamina , Titânio
10.
Angew Chem Int Ed Engl ; 58(45): 16223-16228, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31483553

RESUMO

The current Si production process is based on the high-temperature (1700 °C) reduction of SiO2 with carbon that produces large amounts of CO2 . We report an alternative low-temperature (850 °C) process based on the reduction of SiO2 in molten CaCl2 that does not produce CO2 . It utilizes an anode material (Ti4 O7 ) capable of sustained oxygen evolution. Two types of this anode material, dense Ti4 O7 and porous Ti4 O7 , were tested. The dense anode showed a better performance. The anode stability is attributed to the formation of a protective TiO2 layer on its surface. In situ periodic current reversal and ex situ H2 reduction could be used for extending the lifetime of the anodes. The findings show that this material can be applied as a recyclable anode in molten CaCl2 . Si wires, films, and particles were deposited with this anode under different cathodic current densities. The prepared Si film exhibited ≈30-40 % of the photocurrent response of a commercial p-type Si wafer, indicating potential use in photovoltaic cells.

11.
Environ Sci Technol ; 52(21): 12675-12684, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30239187

RESUMO

This research focused on improving mineralization rates during the advanced electrochemical oxidation treatment of agricultural water contaminants. For the first time, bismuth-doped tin oxide (BDTO) catalysts were deposited on Magnéli phase (Ti nO2 n-1, n = 4-6) reactive electrochemical membranes (REMs). Terephthalic acid (TA) was used as a OH• probe, whereas atrazine (ATZ) and clothianidin (CDN) were chosen as model agricultural water contaminants. The BDTO-deposited REMs (REM/BDTO) showed higher compound removal than the REM, due to enhanced OH• production. At 3.5 V/SHE, complete mineralization of TA, ATZ, and CDN was achieved for the REM/BDTO upon a single pass in the reactor (residence time ∼3.6 s). Energy consumption for REM/BDTO was as much as 31-fold lower than the REM, with minimal values per log removal of <0.53 kWh m-3 for TA (3.5 V/SHE), <0.42 kWh m-3 for ATZ (3.0 V/SHE), and 0.83 kWh m-3 for CDN (3.0 V/SHE). Density functional theory simulations provided potential dependent activation energy profiles for ATZ, CDN, and various oxidation products. Efficient mass transfer and a reaction mechanism involving direct electron transfer and reaction with OH• were responsible for the rapid and complete mineralization of ATZ and CDN at very short residence times.


Assuntos
Atrazina , Poluentes Químicos da Água , Eletrodos , Guanidinas , Neonicotinoides , Oxirredução , Tiazóis , Titânio
12.
Environ Sci Technol ; 52(16): 9370-9379, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30039962

RESUMO

This research focused on synthesis, characterization, and application of point-of-use catalytic reactive electrochemical membranes (REMs) for electrocatalytic NO3- reduction. Deposition of Pd-Cu and Pd-In catalysts to the REMs produced catalytic REMs (i.e., Pd-Cu/REM and Pd-In/REM) that were active for NO3- reduction. Optimal performance was achieved with a Pd-Cu/REM and upstream counter electrode, which reduced NO3- from 1.0 mM to below the EPAs regulatory MCL (700 µM) in a single pass through the REM (residence time ∼2 s), obtaining product selectivity of <2% toward NO2-/NH3. Nitrate reduction was not affected by dissolved oxygen and carbonate species and only slightly decreased in a surface water sample due to Ca2+ and Mg2+ scaling. Energy consumption to treat surface water was 1.1 to 1.3 kWh mol-1 for 1 mM NO3- concentrations, and decreased to 0.19 and 0.12 kWh mol-1 for 10 and 100 mM NaNO3 solutions, respectively. Electrocatalytic reduction kinetics were shown to be an order of magnitude higher than catalytic NO3- reduction kinetics. Conversion of up to 67% of NO3-, with low NO2- (0.7-11 µM) and NH3 formation (<10 µM), and low energy consumption obtained in this study suggest that Pd-Cu/REMs are a promising technology for distributed water treatment.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Catálise , Nitratos , Óxidos de Nitrogênio
13.
Environ Sci Technol ; 51(4): 2355-2365, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28072535

RESUMO

The detection of hydroxyl radicals (OH•) is typically accomplished by using reactive probe molecules, but prior studies have not thoroughly investigated the suitability of these probes for use in electrochemical advanced oxidation processes (EAOPs), due to the neglect of alternative reaction mechanisms. In this study, we investigated the suitability of four OH• probes (coumarin, p-chlorobenzoic acid, terephthalic acid, and p-benzoquinone) for use in EAOPs. Experimental results indicated that both coumarin and p-chlorobenzoic acid are oxidized via direct electron transfer reactions, while p-benzoquinone and terephthalic acid are not. Coumarin oxidation to form the OH• adduct product 7-hydroxycoumarin was found at anodic potentials lower than that necessary for OH• formation. Density functional theory (DFT) simulations found a thermodynamically favorable and non-OH• mediated pathway for 7-hydroxycoumarin formation, which is activationless at anodic potentials > 2.10 V/SHE. DFT simulations also provided estimates of E° values for a series of OH• probe compounds, which agreed with voltammetry results. Results from this study indicated that terephthalic acid is the most appropriate OH• probe compound for the characterization of electrochemical and catalytic systems.


Assuntos
Radical Hidroxila/química , Oxirredução , Benzoquinonas , Eletrodos , Umbeliferonas
15.
Environ Sci Technol ; 50(3): 1428-36, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26735740

RESUMO

This research focused on the synthesis, characterization, and performance testing of a novel Magnéli phase (TinO2n-1), n = 4 to 6, reactive electrochemical membrane (REM) for water treatment. The REMs were synthesized from tubular asymmetric TiO2 ultrafiltration membranes, and optimal reactivity was achieved for REMs composed of high purity Ti4O7. Probe molecules were used to assess outer-sphere charge transfer (Fe(CN)6(4-)) and organic compound oxidation through both direct oxidation (oxalic acid) and formation of OH(•) (coumarin, terephthalic acid). High membrane fluxes (3208 L m(-2) h(-1) bar(-1) (LMH bar(-1))) were achieved and resulted in a convection-enhanced rate constant for Fe(CN)6(4-) oxidation of 1.4 × 10(-4) m s(-1), which is the highest reported in an electrochemical flow-through reactor and approached the kinetic limit. The optimal removal rate for oxalic acid was 401.5 ± 18.1 mmol h(-1) m(-2) at 793 LMH, with approximately 84% current efficiency. Experiments indicate OH(•) were produced only on the Ti4O7 REM and not on less reduced phases (e.g., Ti6O11). REMs were also tested for oxyanion separation. Approximately 67% removal of a 1 mM NO3(-) solution was achieved at 58 LMH, with energy consumption of 0.22 kWh m(-3). These results demonstrate the extreme promise of REMs for water treatment applications.


Assuntos
Membranas Artificiais , Titânio/química , Purificação da Água/instrumentação , Cumarínicos/química , Técnicas Eletroquímicas , Cinética , Nitratos/química , Ácido Oxálico/química , Oxirredução , Ácidos Ftálicos/química , Ultrafiltração/instrumentação , Poluentes Químicos da Água/química
16.
Environ Sci Technol ; 48(10): 5857-67, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24766505

RESUMO

This research investigated the removal mechanisms of p-nitrophenol, p-methoxyphenol, and p-benzoquinone at a porous Ti4O7 reactive electrochemical membrane (REM) under anodic polarization. Cross-flow filtration experiments and density functional theory (DFT) calculations indicated that p-benzoquinone removal was primarily due to reaction with electrochemically formed OH(•), while the dominant removal mechanism of p-nitrophenol and p-methoxyphenol was a function of the anodic potential. At low anodic potentials (1.7-1.8 V/SHE), p-nitrophenol and p-methoxyphenol were removed primarily by an electrochemical adsorption/polymerization mechanism on the REM. Increasing anodic potentials (1.9-3.2 V/SHE) resulted in the electroassisted adsorption mechanism contributing far less to p-methoxyphenol removal compared to p-nitrophenol. DFT calculations indicated that an increase in anodic potential resulted in a shift in p-methoxyphenol removal from a 1e(-) direct electron transfer (DET) reaction that resulted in radical formation and significant adsorption/polymerization, to a 2e(-) DET reaction that formed nonadsorbing products (i.e., p-benzoquinone). However, the anodic potentials were too low for the 2e(-) DET reaction to be thermodynamically favorable for p-nitrophenol. The decreased COD adsorption for p-nitrophenol at higher anodic potentials was attributed to reaction of soluble/adsorbed organics with OH(•). These results provide the first mechanistic explanation for p-substituted phenolic compound removal during advanced electrochemical oxidation processes.


Assuntos
Eletroquímica , Membranas Artificiais , Fenóis/química , Titânio/química , Adsorção , Anisóis/química , Benzoquinonas/química , Análise da Demanda Biológica de Oxigênio , Modelos Químicos , Conformação Molecular , Nitrofenóis/química , Oxirredução , Porosidade , Teoria Quântica , Termodinâmica , Fatores de Tempo
17.
Chemosphere ; 357: 141849, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599331

RESUMO

Electrocatalytic destruction of per- and polyfluoroalkyl substances (PFAS) is an emerging approach for treatment of PFAS-contaminated water. In this study, a systematic ab initio investigation of PFAS adsorption on Ni, a widely used electrocatalyst, was conducted by means of dispersion-corrected Density Functional Theory (DFT) calculations. The objective of this investigation was to elucidate the adsorption characteristics and charge transfer mechanisms of different PFAS molecules on Ni surfaces. PFAS adsorption on three of the most thermodynamically favorable Ni surface facets, namely (001), (110), and (111), was investigated. Additionally, the role of PFAS chain length and functional group was studied by comparing the adsorption characteristics of different PFAS compounds, namely perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorobutanesulfonic acid (PFBS), and perfluorobutanoic acid (PFBA). For each PFAS molecule-Ni surface facet pair, different adsorption configurations were considered. Further calculations were carried out to reveal the effect of solvation, pre-adsorbed atomic hydrogen (H), and surface defects on the adsorption energy. Overall, the results revealed that the adsorption of PFAS on Ni surfaces is energetically favorable, and that the adsorption is primarily driven by the functional groups. The presence of preadsorbed H and the inclusion of solvation produced less exothermic adsorption energies, while surface vacancy defects showed mixed effects on PFAS adsorption. Taken together, the results of this study suggest that Ni is a promising electrocatalyst for PFAS adsorption and destruction, and that proper control for the exposed facets and surface defects could enhance the adsorption stability.


Assuntos
Caprilatos , Teoria da Densidade Funcional , Fluorocarbonos , Níquel , Adsorção , Fluorocarbonos/química , Níquel/química , Caprilatos/química , Poluentes Químicos da Água/química , Ácidos Alcanossulfônicos/química , Termodinâmica , Catálise
18.
Environ Sci Technol Lett ; 11(8): 871-877, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39156924

RESUMO

This study developed a novel molecularly imprinted polymer (MIP) that is both conductive and redox-active for directly quantifying perfluorooctanoic acid (PFOA) electrochemically. We synthesized the monomer 3,4-ethylenedioxythiophene-2,2,6,6-tetramethylpiperidinyloxy (EDOT-TEMPO) for electropolymerization on a glassy carbon electrode using PFOA as a template, which was abbreviated as PEDOT-TEMPO-MIP. The redox-active MIP eliminated the need for external redox probes. When exposed to PFOA, both anodic and cathodic peaks of MIP showed a decreased current density. This observation can be explained by the formation of a charge-assisted hydrogen bond between the anionic PFOA and MIP's redox-active moieties (TEMPO) that hinder the conversion between the oxidized and reduced forms of TEMPO. The extent of the current density decrease showed excellent linearity with PFOA concentrations, with a method detection limit of 0.28 ng·L-1. PEDOT-TEMPO-MIP also exhibited high selectivity toward PFOA against other per- and polyfluoroalkyl substances (PFAS) at environmentally relevant concentrations. Our results suggest electropolymerization of MIPs was highly reproducible, with a relative standard deviation of 5.1% among three separate MIP electrodes. PEDOT-TEMPO-MIP can also be repeatedly used with good stability and reproducibility for PFOA detection. This study provides an innovative platform for rapid PFAS quantification using redox-active MIPs, laying the groundwork for developing compact PFAS sensors.

19.
Environ Sci Technol ; 47(21): 12391-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24066803

RESUMO

Rates of ClO4(-) formation from ClO3(-) oxidation were investigated in batch experiments as a function of organic compounds (p-nitrophenol, p-benzoquinone, p-methoxyphenol, and oxalic acid) and current density using boron-doped diamond film anodes. Excluding organics, ClO4(-) formation rates ranged from 359 to 687 µmoles m(-2) min(-1) for current densities of 1-10 mA cm(-2). The presence of p-substituted phenols inhibited ClO4(-) formation rates between 13.0 and 99.6%. Results from a reactive-transport model of the diffuse layer adjacent to the anode surface indicate that competition between organics and ClO3(•) for OH(•) within a reaction zone (0.02-0.96 µm) adjacent to the anode controls ClO4(-) formation. Under kinetic-limited conditions (1.0 mA cm(-2)), organics reach the anode surface and substrates with higher OH(•) reaction rates demonstrate greater inhibition of perchlorate formation (IPF). At higher current densities (10 mA cm(-2)), organic compound oxidation becomes mass transfer-limited and compounds degrade a small distance from the anode surface (∼ 0.26 µm for p-methoxyphenol). Therefore, OH(•) scavenging does not occur at the anode surface and IPF values decrease. Results provide evidence for the existence of desorbed OH(•) near the anode surface and highlight the importance of controlling reactor operating conditions to limit ClO4(-) production during anodic treatment of organic compounds.


Assuntos
Boro/química , Diamante/química , Compostos Orgânicos/química , Percloratos/química , Simulação por Computador , Técnicas Eletroquímicas , Eletrodos , Cinética , Modelos Teóricos
20.
Environ Sci Technol ; 47(12): 6554-63, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23688192

RESUMO

This research investigates the characterization and testing of an anodic reactive electrochemical membrane (REM) for water treatment. The REM consists of a porous substoichiometric titanium dioxide (Ti4O7) tubular, ceramic electrode operated in cross-flow filtration mode. Advection-enhanced mass transfer rates, on the order of a 10-fold increase, are obtained when the REM is operated in filtration-mode, relative to a traditional flow-through mode. Oxidation experiments with model organic compounds showed that the REM was active for both direct oxidation reactions and formation of hydroxyl radicals (OH(•)). Electrochemical impedance spectroscopy data interpreted by transmission line modeling determined that the electro-active surface area was 619 times the nominal geometric surface area. Results from filtration-mode experiments with p-methoxyphenol indicate that compound removal occurred by electro-assisted adsorption and subsequent oxidation. Electro-assisted adsorption was the primary removal mechanism at potentials where OH(•) did not form. At higher potentials (>2.0 V), where OH(•) concentrations were significant, p-methoxyphenol removal occurred by a combination of electro-assisted adsorption and OH(•) oxidation. These removal mechanisms resulted in 99.9% p-methoxyphenol removal in the permeate, with calculated current efficiencies >73% at applied current densities of 0.5-1.0 mA cm(-2). These results illustrate the extreme promise of the REM for water treatment.


Assuntos
Eletroquímica/métodos , Titânio/química , Purificação da Água/métodos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA