Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260654

RESUMO

A multitude of tools now exist that allow us to precisely manipulate the human genome in a myriad of different ways. However, successful delivery of these tools to the cells of human patients remains a major barrier to their clinical implementation. Here we introduce a new cellular approach for in vivo genetic engineering, Secreted Particle Information Transfer (SPIT) that utilizes human cells as delivery vectors for in vivo genetic engineering. We demonstrate the application of SPIT for cell-cell delivery of Cre recombinase and CRISPR-Cas9 enzymes, we show that genetic logic can be incorporated into SPIT and present the first demonstration of human cells as a delivery platform for in vivo genetic engineering in immunocompetent mice. We successfully applied SPIT to genetically modify multiple organs and tissue stem cells in vivo including the liver, spleen, intestines, peripheral blood, and bone marrow. We anticipate that by harnessing the large packaging capacity of a human cell's nucleus, the ability of human cells to engraft into patients' long term and the capacity of human cells for complex genetic programming, that SPIT will become a paradigm shifting approach for in vivo genetic engineering.

2.
Nat Biomed Eng ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886504

RESUMO

Some gene polymorphisms can lead to monogenic diseases, whereas other polymorphisms may confer beneficial traits. A well-characterized example is congenital erythrocytosis-the non-pathogenic hyper-production of red blood cells-that is caused by a truncated erythropoietin receptor. Here we show that Cas9-mediated genome editing in CD34+ human haematopoietic stem and progenitor cells (HSPCs) can recreate the truncated form of the erythropoietin receptor, leading to substantial increases in erythropoietic output. We also show that combining the expression of the cDNA of a truncated erythropoietin receptor with a previously reported genome-editing strategy to fully replace the HBA1 gene with an HBB transgene in HSPCs (to restore normal haemoglobin production in cells with a ß-thalassaemia phenotype) gives the edited HSPCs and the healthy red blood cell phenotype a proliferative advantage. Combining knowledge of human genetics with precise genome editing to insert natural human variants into therapeutic cells may facilitate safer and more effective genome-editing therapies for patients with genetic diseases.

3.
Nat Biotechnol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589662

RESUMO

CRISPR-Cas9 paired with adeno-associated virus serotype 6 (AAV6) is among the most efficient tools for producing targeted gene knockins. Here, we report that this system can lead to frequent concatemeric insertions of the viral vector genome at the target site that are difficult to detect. Such errors can cause adverse and unreliable phenotypes that are antithetical to the goal of precision genome engineering. The concatemeric knockins occurred regardless of locus, vector concentration, cell line or cell type, including human pluripotent and hematopoietic stem cells. Although these highly abundant errors were found in more than half of the edited cells, they could not be readily detected by common analytical methods. We describe strategies to detect and thoroughly characterize the concatemeric viral vector insertions, and we highlight analytical pitfalls that mask their prevalence. We then describe strategies to prevent the concatemeric inserts by cutting the vector genome after transduction. This approach is compatible with established gene editing pipelines, enabling robust genetic knockins that are safer, more reliable and more reproducible.

4.
Cell Rep Methods ; 2(11): 100349, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36452874

RESUMO

Technologies to reprogram somatic cells into iPSCs have advanced significantly, however challenges to the derivation of iPSCs remain. In this issue of Cell Reports Methods, Kunitomi et al. address some of these challenges by developing a straightforward protocol to derive naive human iPSCs using Sendai virus vectors.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Reprogramação Celular/genética , Vírus Sendai/genética , Vetores Genéticos/genética
5.
Nat Rev Immunol ; 22(12): 719-733, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35301483

RESUMO

Cell and gene therapies using haematopoietic stem cells (HSCs) epitomize the transformative potential of regenerative medicine. Recent clinical successes for gene therapies involving autologous HSC transplantation (HSCT) demonstrate the potential of genetic engineering in this stem cell type for curing disease. With recent advances in CRISPR gene-editing technologies, methodologies for the ex vivo expansion of HSCs and non-genotoxic conditioning protocols, the range of clinical indications for HSC-based gene therapies is expected to significantly expand. However, substantial immunological challenges need to be overcome. These include pre-existing immunity to gene-therapy reagents, immune responses to neoantigens introduced into HSCs by genetic engineering, and unique challenges associated with next-generation and off-the-shelf HSC products. By synthesizing these factors in this Review, we hope to encourage more research to address the immunological issues associated with current and next-generation HSC-based gene therapies to help realize the full potential of this field.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Humanos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , Terapia Genética/métodos
6.
Nat Commun ; 13(1): 1053, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217666

RESUMO

Preexisting immunity against Cas9 proteins in humans represents a safety risk for CRISPR-Cas9 technologies. However, it is unclear to what extent preexisting Cas9 immunity is relevant to the eye as it is targeted for early in vivo CRISPR-Cas9 clinical trials. While the eye lacks T-cells, it contains antibodies, cytokines, and resident immune cells. Although precise mechanisms are unclear, intraocular inflammation remains a major cause of vision loss. Here, we used immunoglobulin isotyping and ELISA platforms to profile antibodies in serum and vitreous fluid biopsies from human adult subjects and Cas9-immunized mice. We observed high prevalence of preexisting Cas9-reactive antibodies in serum but not in the eye. However, we detected intraocular antibodies reactive to S. pyogenes-derived Cas9 after S. pyogenes intraocular infection. Our data suggest that serum antibody concentration may determine whether specific intraocular antibodies develop, but preexisting immunity to Cas9 may represent a lower risk in human eyes than systemically.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Animais , Anticorpos/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Humanos , Camundongos , Streptococcus pyogenes/metabolismo , Linfócitos T
7.
Cell Stem Cell ; 28(1): 141-149.e3, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33373620

RESUMO

Interspecies organ generation via blastocyst complementation has succeeded in rodents, but not yet in evolutionally more distant species. Early developmental arrest hinders the formation of highly chimeric fetuses. We demonstrate that the deletion of insulin-like growth factor 1 receptor (Igf1r) in mouse embryos creates a permissive "cell-competitive niche" in several organs, significantly augmenting both mouse intraspecies and mouse/rat interspecies donor chimerism that continuously increases from embryonic day 11 onward, sometimes even taking over entire organs within intraspecies chimeras. Since Igf1r deletion allows the evasion of early developmental arrest, interspecies fetuses with high levels of organ chimerism can be generated via blastocyst complementation. This observation should facilitate donor cell contribution to host tissues, resulting in whole-organ generation via blastocyst complementation across wide evolutionary distances.


Assuntos
Quimera , Células-Tronco Pluripotentes , Animais , Blastocisto , Quimerismo , Camundongos , Ratos , Roedores
8.
Nat Commun ; 12(1): 686, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514718

RESUMO

CRISPR/Cas9-mediated beta-globin (HBB) gene correction of sickle cell disease (SCD) patient-derived hematopoietic stem cells (HSCs) in combination with autologous transplantation represents a recent paradigm in gene therapy. Although several Cas9-based HBB-correction approaches have been proposed, functional correction of in vivo erythropoiesis has not been investigated previously. Here, we use a humanized globin-cluster SCD mouse model to study Cas9-AAV6-mediated HBB-correction in functional HSCs within the context of autologous transplantation. We discover that long-term multipotent HSCs can be gene corrected ex vivo and stable hemoglobin-A production can be achieved in vivo from HBB-corrected HSCs following autologous transplantation. We observe a direct correlation between increased HBB-corrected myeloid chimerism and normalized in vivo red blood cell (RBC) features, but even low levels of chimerism resulted in robust hemoglobin-A levels. Moreover, this study offers a platform for gene editing of mouse HSCs for both basic and translational research.


Assuntos
Anemia Falciforme/terapia , Eritropoese/genética , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Globinas beta/genética , Anemia Falciforme/sangue , Anemia Falciforme/diagnóstico , Anemia Falciforme/genética , Animais , Sistemas CRISPR-Cas/genética , Terapia Combinada/métodos , Dependovirus , Modelos Animais de Doenças , Feminino , Edição de Genes/métodos , Técnicas de Introdução de Genes , Vetores Genéticos/genética , Humanos , Camundongos , Camundongos Transgênicos , Parvovirinae/genética , Transplante Autólogo/métodos
9.
Sci Transl Med ; 13(598)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135108

RESUMO

Sickle cell disease (SCD) is the most common serious monogenic disease with 300,000 births annually worldwide. SCD is an autosomal recessive disease resulting from a single point mutation in codon six of the ß-globin gene (HBB). Ex vivo ß-globin gene correction in autologous patient-derived hematopoietic stem and progenitor cells (HSPCs) may potentially provide a curative treatment for SCD. We previously developed a CRISPR-Cas9 gene targeting strategy that uses high-fidelity Cas9 precomplexed with chemically modified guide RNAs to induce recombinant adeno-associated virus serotype 6 (rAAV6)-mediated HBB gene correction of the SCD-causing mutation in HSPCs. Here, we demonstrate the preclinical feasibility, efficacy, and toxicology of HBB gene correction in plerixafor-mobilized CD34+ cells from healthy and SCD patient donors (gcHBB-SCD). We achieved up to 60% HBB allelic correction in clinical-scale gcHBB-SCD manufacturing. After transplant into immunodeficient NSG mice, 20% gene correction was achieved with multilineage engraftment. The long-term safety, tumorigenicity, and toxicology study demonstrated no evidence of abnormal hematopoiesis, genotoxicity, or tumorigenicity from the engrafted gcHBB-SCD drug product. Together, these preclinical data support the safety, efficacy, and reproducibility of this gene correction strategy for initiation of a phase 1/2 clinical trial in patients with SCD.


Assuntos
Anemia Falciforme , Compostos Heterocíclicos , Anemia Falciforme/genética , Anemia Falciforme/terapia , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Humanos , Camundongos , Reprodutibilidade dos Testes , Globinas beta/genética
10.
Nat Med ; 25(2): 249-254, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30692695

RESUMO

The CRISPR-Cas9 system is a powerful tool for genome editing, which allows the precise modification of specific DNA sequences. Many efforts are underway to use the CRISPR-Cas9 system to therapeutically correct human genetic diseases1-6. The most widely used orthologs of Cas9 are derived from Staphylococcus aureus and Streptococcus pyogenes5,7. Given that these two bacterial species infect the human population at high frequencies8,9, we hypothesized that humans may harbor preexisting adaptive immune responses to the Cas9 orthologs derived from these bacterial species, SaCas9 (S. aureus) and SpCas9 (S. pyogenes). By probing human serum for the presence of anti-Cas9 antibodies using an enzyme-linked immunosorbent assay, we detected antibodies against both SaCas9 and SpCas9 in 78% and 58% of donors, respectively. We also found anti-SaCas9 T cells in 78% and anti-SpCas9 T cells in 67% of donors, which demonstrates a high prevalence of antigen-specific T cells against both orthologs. We confirmed that these T cells were Cas9-specific by demonstrating a Cas9-specific cytokine response following isolation, expansion, and antigen restimulation. Together, these data demonstrate that there are preexisting humoral and cell-mediated adaptive immune responses to Cas9 in humans, a finding that should be taken into account as the CRISPR-Cas9 system moves toward clinical trials.


Assuntos
Imunidade Adaptativa , Proteína 9 Associada à CRISPR/metabolismo , Adulto , Separação Celular , Feminino , Humanos , Imunidade Humoral , Masculino , Linfócitos T/imunologia
11.
Mol Ther Nucleic Acids ; 12: 89-104, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30195800

RESUMO

Engineered nuclease-mediated gene targeting through homologous recombination (HR) in hematopoietic stem and progenitor cells (HSPCs) has the potential to treat a variety of genetic hematologic and immunologic disorders. Here, we identify critical parameters to reproducibly achieve high frequencies of RNA-guided (single-guide RNA [sgRNA]; CRISPR)-Cas9 nuclease (Cas9/sgRNA) and rAAV6-mediated HR at the ß-globin (HBB) locus in HSPCs. We identified that by transducing HSPCs with rAAV6 post-electroporation, there was a greater than 2-fold electroporation-aided transduction (EAT) of rAAV6 endocytosis with roughly 70% of the cell population having undergone transduction within 2 hr. When HSPCs are cultured at low densities (1 × 105 cells/mL) prior to HBB targeting, HSPC expansion rates are significantly positively correlated with HR frequencies in vitro as well as in repopulating cells in immunodeficient NSG mice in vivo. We also show that culturing fluorescence-activated cell sorting (FACS)-enriched HBB-targeted HSPCs at low cell densities in the presence of the small molecules, UM171 and SR1, stimulates the expansion of gene-edited HSPCs as measured by higher engraftment levels in immunodeficient mice. This work serves not only as an optimized protocol for genome editing HSPCs at the HBB locus for the treatment of ß-hemoglobinopathies but also as a foundation for editing HSPCs at other loci for both basic and translational research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA