Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39062951

RESUMO

Rosemary has many medicinal and therapeutic properties and therefore it is important to study how to maximize the recovery of its bioactive compounds. In the present study, four different extraction techniques were used, namely stirring extraction (STE), pulsed electric field-assisted extraction (PEF), ultrasound probe-assisted extraction (UPAE), and ultrasound bath-assisted extraction (UBAE). First, some primary experiments were carried out in order to optimize each technique individually through the Plackett-Burman design. Then, each technique was applied under optimal conditions and the results were compared with each other. The optimal total polyphenol content (TPC) of STE is ~19 mg gallic acid equivalents per gram of dry weight (dw), while the antioxidant activity of the extract is 162 µmol ascorbic acid equivalents (AAEs) per gram of dw via FRAP and ~110 µmol AAE per gram of dw via DPPH. As for PEF, the optimal TPC is ~12 mg GAE/g dw, and the FRAP and DPPH values are ~102 and ~70 µmol AAE per gram of dw, respectively. When it comes to UPAE, the optimal TPC is ~16 mg GAE/g dw and the antioxidant capacity of the extract is ~128 µmol AAE/g dw through FRAP and ~98 µmol AAE/g dw through DPPH. UBAE optimal extract yielded ~17 mg GAE/g dw TPC, ~146 µmol AAE/g dw for FRAP, and ~143 µmol AAE/g dw for DPPH. The highest flavonoid content (~6.5 mg rutin equivalent/g dw) and DPPH (~143 µmol ascorbic acid equivalent/g dw) is obtained through UBAE. UPAE has been shown to be more efficient in recovering ascorbic acid (~20 mg/g dw). Additionally, the chlorophyll-to-carotenoid ratios of UPAE and UBAE were 2.98 and 2.96, respectively, indicating that the extracts had a generally positive impact on health. Considering the environmental impact of each extraction technique but also which antioxidant factor needs to be maximized, the most suitable extraction technique will be chosen.


Assuntos
Antioxidantes , Extratos Vegetais , Rosmarinus , Antioxidantes/química , Antioxidantes/isolamento & purificação , Rosmarinus/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Polifenóis/isolamento & purificação , Polifenóis/química , Polifenóis/análise , Fracionamento Químico/métodos , Ácido Ascórbico/química , Ácido Ascórbico/análise
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731845

RESUMO

Moringa oleifera leaves are rich sources of bioactive compounds with potential health benefits, including antioxidants and anti-inflammatory agents. Pressurized liquid extraction (PLE) stands out as a promising technique for effectively extracting valuable compounds from natural sources. In this study, we aimed to optimize PLE parameters, such as temperature, extraction duration, and pressure, to maximize bioactive compound (polyphenols, flavonoids, and ascorbic acid) yield from M. oleifera leaves and evaluate their antioxidant and anti-inflammatory activities. According to the outcomes of this research, the maximum achieved total polyphenol content was 24.10 mg gallic acid equivalents (GAE)/g of dry weight (dw), and the total flavonoid content was increased up to 19.89 mg rutin equivalents (RtE)/g dw. Moreover, after HPLC-DAD analysis, neochlorogenic and chlorogenic acids, catechin and epicatechin, rutin, and narirutin were identified and quantified. As far as the optimum ascorbic acid content is concerned, it was found to be 4.77 mg/g dw. The antioxidant activity was evaluated by three different methods: ferric reducing antioxidant power (FRAP), the DPPH method, and the anti-hydrogen peroxide activity (AHPA) method, resulting in 124.29 µmol ascorbic acid equivalent (AAE)/g dw, 131.28 µmol AAE/g dw, and 229.38 µmol AAE/g dw values, respectively. Lastly, the albumin denaturation inhibition was found to be 37.54%. These findings underscore the potential of PLE as an efficient extraction method for preparing extracts from M. oleifera leaves with the maximum content of bioactive compounds.


Assuntos
Antioxidantes , Moringa oleifera , Extratos Vegetais , Folhas de Planta , Moringa oleifera/química , Folhas de Planta/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Flavonoides/isolamento & purificação , Flavonoides/análise , Flavonoides/química , Flavonoides/farmacologia , Polifenóis/isolamento & purificação , Polifenóis/farmacologia , Polifenóis/análise , Polifenóis/química , Ácido Ascórbico/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Pressão , Extração Líquido-Líquido/métodos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação
3.
Molecules ; 29(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338308

RESUMO

The purpose of this investigation was (i) the development of a novel, green tertiary solvent system, composed of water, ethanol and glycerol, and (ii) the implementation of an organosolv treatment of red grape pomace (RGP) for the efficient production of polyphenol-containing extracts with enhanced antioxidant properties. The treatment developed was performed under mild acidic conditions, imparted by the addition of citric acid, and it was first evaluated on the basis of severity, establishing linear models that described the correlation between treatment performance and combined severity factors. To solicit treatment optimization, response surface methodology was implemented, considering solvent acidity and residence time as the treatment variables. The optimized treatment afforded maximum total polyphenol (166 ± 6 mg GAE g-1 DM), total pigment (4.4 ± 0.2 mg MvE g-1 DM) and total flavanol (31.5 mg CtE g-1 DM) yields and extracts with particularly enhanced antioxidant activity. This might be attributed to specific constituents with high antioxidant potency, such as catechin, determined in the extract using high-performance liquid chromatography. Thus, the treatment developed is proposed as a highly efficient process to generate RGP extracts enriched in polyphenolic compounds, with enhanced antioxidant activity. Such extracts might then be valorized as food additives, to provide antioxidant protection and/or pigmentation.


Assuntos
Polifenóis , Vitis , Polifenóis/química , Antioxidantes/química , Vitis/química , Glicerol , Etanol/química , Água , Solventes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
4.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37958898

RESUMO

Nowadays, more and more researchers engage in studies regarding the extraction of bioactive compounds from natural sources. To this end, plenty of studies have been published on this topic, with the interest in the field growing exponentially. One major aim of such studies is to maximize the extraction yield and, simultaneously, to use procedures that adhere to the principles of green chemistry, as much as possible. It was not until recently that pulsed electric field (PEF) technology has been put to good use to achieve this goal. This new technique exhibits many advantages, compared to other techniques, and they have successfully been reaped for the production of extracts with enhanced concentrations in bioactive compounds. In this advancing field of research, a good understanding of the existing literature is mandatory to develop more advanced concepts in the future. The aim of this review is to provide a thorough discussion of the most important applications of PEF for the enhancement of polyphenols extraction from fresh food products and by-products, as well as to discuss the current limitations and the prospects of the field.


Assuntos
Eletricidade , Polifenóis , Alimentos , Manipulação de Alimentos/métodos , Antioxidantes/análise
5.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674630

RESUMO

Tocopherols are natural bioactive compounds with several health benefits. This study evaluated the effect of different ratios of α- and δ- tocopherol homologs to protect sunflower oil (SO) and olive pomace oil (OPO) against oxidation. A synergistic effect was recorded when the two tocopherols were combined at a ratio of 7:1 (α-T/δ-T). The oil samples were exposed to accelerated oxidation conditions using a Rancimat (90 °C and airflow of 15 L/h for 24 h) and protection from tocopherols was compared with that from butylated hydroxytoluene (BHT). Assessment of oil stability was examined using well-known parameters such as peroxide value (PV), thiobarbituric acid reactive substances (TBARS), p-anisidine value (p-AV), conjugated dienes (CD) and trienes (CT), and total oxidation (Totox) value, which were all significantly reduced when tocopherols were added at a ratio of 7:1 α-T/δ-T. Primary oxidative compounds measured according to PV were only reduced in SO samples (6.11%). Off-flavor compounds measured via TBARS assay in SO samples were reduced by above 20%, while p-AV was also reduced. CDvalue was correlated with PV in SO samples, while the 7:1 mixture was more effective than BHT for CTvalue. Total oxidation values in SO samples and OPO samples were reduced by 6.02% and 12.62%, respectively. These values in SO samples also provided a remarkable correlation (R2 > 0.95) with incubation time. Moreover, the synergistic effect was not only effective in reducing the oxidation values of oil samples, but also in lowering the degradation rate of tocopherols. Protective effects from tocopherols were mainly observed in SO samples, as OPO samples were more resistant to oxidation processes. This effect was even observed in fatty acid analysis, where the 7:1 mixture provided better results than BHT-spiked samples. Thus, it is suggested that tocopherol mixtures might be used as a natural preservative in the food industry to restrain lipid oxidation processes.


Assuntos
Antioxidantes , Tocoferóis , Antioxidantes/farmacologia , Antioxidantes/análise , Óleo de Girassol , Azeite de Oliva , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Oxirredução , Óleos de Plantas
6.
Molecules ; 28(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36770896

RESUMO

The ubiquitous presence of emerging contaminants in the environment is an issue of great concern. Notably, for some of them, no established regulation exists. Benzophenones are listed as emerging contaminants, which have been identified in the environment as well as in human fluids, such as urine, placenta, and breast milk. Their accumulation and stability in the environment, combined with the revealed adverse effects on ecosystems including endocrine, reproductive, and other disorders, have triggered significant interest for research. Benzophenones should be extracted from environmental samples and determined for environmental-monitoring purposes to assess their presence and possible dangers. Numerous sample preparation methods for benzophenones in environmental matrices and industrial effluents have been proposed and their detection in more complex matrices, such as fish and sludges, has also been reported. These methods range from classical to more state-of-the-art methods, such as solid-phase extraction, dispersive SPE, LLE, SBSE, etc., and the analysis is mostly completed with liquid chromatography, using several detection modes. This review critically outlines sample preparation methods that have been proposed to date, for the extraction of benzophenones from simple and complex environmental matrices and for cleaning up sample extracts to eliminate potential interfering components that coexist therein. Moreover, it provides a brief overview of their occurrence, fate, and toxicity.


Assuntos
Benzofenonas , Ecossistema , Animais , Feminino , Humanos , Benzofenonas/química , Cromatografia Líquida , Extração em Fase Sólida , Manejo de Espécimes
7.
Metabolomics ; 18(11): 89, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36342571

RESUMO

INTRODUCTION: The 2,6-dichloro-1,4-benzoquinone (DCBQ) and its derivative 2,6-dichloro-3-hydroxy-1,4-benzoquinone (DCBQ-OH) are disinfection by-products (DBPs) and emerging pollutants in the environment. They are considered to be of particular importance as they have a high potential of toxicity and they are likely to be carcinogenic. OBJECTIVES: In this study, human epidermal keratinocyte cells (HaCaT) were exposed to the DCBQ and its derivative DCBQ-OH, at concentrations equivalent to their IC20 and IC50, and a study of the metabolic phenotype of cells was performed. METHODS: The perturbations induced in cellular metabolites and their relative content were screened and evaluated through a metabolomic study, using 1H-NMR and MS spectroscopy. RESULTS: Changes in the metabolic pathways of HaCaT at concentrations corresponding to IC20 and IC50 of DCBQ-OH involved the activation of cell membrane α-linolenic acid, biotin, and glutathione and deactivation of glycolysis/gluconeogenesis at IC50. The changes in metabolic pathways at IC20 and IC50 of DCBQ were associated with the activation of inositol phosphate, pertaining to the transfer of messages from the receptors of the membrane to the interior as well as with riboflavin. Deactivation of biotin metabolism was recorded, among others. The cells exposed to DCBQ exhibited a concentration-dependent decrease in saccharide concentrations. The concentration of steroids increased when cells were exposed to IC20 and decreased at IC50. Although both chemical factors stressed the cells, DCBQ led to the activation of transporting messages through phosphorylated derivatives of inositol. CONCLUSION: Our findings provided insights into the impact of the two DBPs on human keratinocytes. Both chemical factors induced energy production perturbations, oxidative stress, and membrane damage.


Assuntos
Desinfecção , Queratinócitos , Humanos , Benzoquinonas/química , Benzoquinonas/toxicidade , Biotina , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Metabolômica
8.
Molecules ; 27(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500480

RESUMO

In this study, the synthesis of a layered double hydroxide (LDH) composite with graphene quantum dots (GQDs) and its utilization for the development of a dispersive solid-phase extraction procedure are described. To this end, a carbonate-free Mg-Al LDH was synthesized. The development of the composite material made feasible the use of GQDs in a sample preparation procedure, while the incorporation of the GQDs in the LDH structure resulted in an 80% increase in extraction efficiency, compared to the bare LDH. As a proof of concept, the composite material was used for the development of an analytical method for the extraction, and preconcentration, of benzophenones, phenols, and parabens in lake water using high-performance liquid chromatography, coupled to a diode array detector. The analytical method exhibits low limits of quantification (0.10-1.33 µg L-1), good recoveries (92-100%), and satisfactory enrichment factors (169-186). Due to the abovementioned merits, the easy synthesis and simple extraction, the developed method can be used for the routine analysis of the target compounds.


Assuntos
Grafite , Parabenos , Parabenos/análise , Benzofenonas/análise , Fenóis/análise , Grafite/química , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão/métodos
9.
Molecules ; 27(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36080275

RESUMO

As the pharmacological properties and therapeutic applications of Cannabis sativa L. pace with the upsurge of interest of the scientific community in harnessing its constituent phytocannabinoids, illicit use may raise serious health issues. Tetrahydrocannabinol (THC) is one of the most well-known phytoactive constituents of cannabis and continues to garner scientific and public attention not only because of its pharmacological value but also because over-the-counter products of THC and prescription medications are becoming increasingly available from pharmacies, dispensaries, Internet, local retail stores, or by illicit means. Hence, a multidimensional approach was employed to examine the impact of THC on zebrafish larvae. The acute toxicity, expressed as LC50, was 1.54 mg/L. Adverse effects were observed on the phenotype, such as tail bending, pericardial edema, etc., even at concentrations lower than LC50, and fundamental functions of larvae (e.g., heart rate and cardiac contractility, and rhythm) were significantly affected. Behavioral changes were noticed, which were reflected in locomotor activity and sensitivity to light/dark changes. Finally, an untargeted metabolomic study was carried out to shed light on the metabolic alterations that occurred, providing substantiating evidence of the observed phenotype alterations. Overall, the potentially detrimental effects of THC on a vertebrate model are depicted.


Assuntos
Cannabis , Alucinógenos , Analgésicos/farmacologia , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Dronabinol/toxicidade , Alucinógenos/farmacologia , Humanos , Larva , Peixe-Zebra
10.
Molecules ; 26(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34684829

RESUMO

Wound healing is a great challenge in many health conditions, especially in non-healing conditions. The search for new wound healing agents continues unabated, as the use of growth factors is accompanied by several limitations. Medicinal plants have been used for a long time in would healing, despite the lack of scientific evidence veryfying their efficacy. Up to now, the number of reports about medicinal plants with wound healing properties is limited. Urtica dioica L. is a well-known plant, widely used in many applications. Reports regarding its wound healing potential are scant and sparse. In this study, the effect of an Urtica dioica L. extract (containing fewer antioxidant compounds compared to methanolic or hydroalcoholic extracts) on cell proliferation, the cell cycle, and migration were examined. Additionally, antioxidant and anti-inflammatory properties were examined. Finally, in vivo experiments were carried out on full-thickness wounds on Wistar rats. It was found that the extract increases the proliferation rate of HEK-293 and HaCaT cells up to 39% and 30% after 24 h, respectively, compared to control cells. The extract was found to increase the population of cells in the G2/M phase by almost 10%. Additionally, the extract caused a two-fold increase in the cell migration rate of both cell lines compared to control cells. Moreover, the extract was found to have anti-inflammatory properties and moderate antioxidant properties that augment its overall wound healing potential. Results from the in vivo experiments showed that wounds treated with an ointment of the extract healed in 9 days, while wounds not treated with the extract healed in 13 days. Histopathological examination of the wound tissue revealed, among other findings, that inflammation was significantly reduced compared to the control. Urtica dioica L. extract application results in faster wound healing, making the extract ideal for wound healing applications and a novel drug candidate for wound healing.


Assuntos
Extratos Vegetais/farmacologia , Plantas Medicinais/química , Urtica dioica/química , Cicatrização/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Ratos , Ratos Wistar , Pele/efeitos dos fármacos , Pele/lesões , Pele/patologia
11.
Molecules ; 25(16)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806630

RESUMO

Even though instrumental advancements are constantly being made in analytical chemistry, sample preparation is still considered the bottleneck of analytical methods. To this end, researchers are developing new sorbent materials to improve and replace existing ones, with the ultimate goal to improve current methods and make them more efficient and effective. A few years ago, an alternative trend was started toward sample preparation: the use of sponge or sponge-like materials. These materials possess favorable characteristics, such as negligible weight, open-hole structure, high surface area, and variable surface chemistry. Although their use seemed promising, this trend soon reversed, due to either the increasing use of nanomaterials in sample preparation or the limited scope of the first materials. Currently, with the development of new materials, such as melamine sponges, along with the advancement in nanotechnology, this topic was revived, and various functionalizations were carried out on such materials. The new materials are used as sorbents in sample preparation in analytical chemistry. This review explores the development of such materials, from the past to the present and into the future, as well as their use in analytical chemistry.


Assuntos
Nanoestruturas/química , Triazinas/química , Nanotecnologia , Manejo de Espécimes
12.
Molecules ; 23(10)2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30309030

RESUMO

A new procedure for the functionalization of melamine sponge (MeS) with urea-formaldehyde (UF) co-oligomers is put forward. The procedure differs from the typical synthesis of the UF co-polymer, as it employs a base-catalyzed condensation step at certain concentrations of urea and formaldehyde. The produced melamine-urea-formaldehyde (MUF) sponge cubes are hydrophobic, despite the presence of hydrophilic groups in the oligomers. The MUF sponge developed herein is used as a sorbent for the solid-phase extraction of 10 analytes, from 6 different classes (i.e., non-steroidal anti-inflammatory drugs, benzophenones, parabens, phenols, pesticides and musks) and an analytical method is developed for their liquid chromatographic separation and detection. Low limits of quantification (0.03 and 1.0 µg L-1), wide linear ranges and excellent recoveries (92⁻100%) are some of the benefits of the proposed procedure. The study of the synthesis conditions of MUF cubes reveals that by altering them the hydrophilic/lipophilic balance of the MUF cubes can be tuned, hinting towards a strong potential for many other applications.


Assuntos
Formaldeído/química , Interações Hidrofóbicas e Hidrofílicas , Extração em Fase Sólida/métodos , Triazinas/química , Ureia/química , Adsorção , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
13.
J Proteome Res ; 15(9): 3322-30, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27432757

RESUMO

Metal nanoparticles (NPs) have proven to be more toxic than bulk analogues of the same chemical composition due to their unique physical properties. The NPs, lately, have drawn the attention of researchers because of their antibacterial and biocidal properties. In an effort to shed light on the mechanism through which the bacteria elimination is achieved and the metabolic changes they undergo, an untargeted metabolomic fingerprint study was carried out on Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria species. The (1)H NMR spectroscopy, in conjunction with high resolution mass-spectrometry (HRMS) and an unsophisticated data processing workflow were implemented. The combined NMR/HRMS data, supported by an open-access metabolomic database, proved to be efficacious in the process of assigning a putative annotation to a wide range of metabolite signals and is a useful tool to appraise the metabolome alterations, as a consequence of bacterial response to NPs. Interestingly, not all the NPs diminished the intracellular metabolites; bacteria treated with iron NPs produced metabolites not present in the nonexposed bacteria sample, implying the activation of previously inactive metabolic pathways. In contrast, copper and iron-copper NPs reduced the annotated metabolites, alluding to the conclusion that the metabolic pathways (mainly alanine, aspartate, and glutamate metabolism, beta-alanine metabolism, glutathione metabolism, and arginine and proline metabolism) were hindered by the interactions of NPs with the intracellular metabolites.


Assuntos
Antibacterianos/farmacologia , Bactérias/metabolismo , Metaboloma/efeitos dos fármacos , Nanopartículas Metálicas/uso terapêutico , Bactérias/efeitos dos fármacos , Cobre/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Ferro/farmacologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Redes e Vias Metabólicas/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Fluxo de Trabalho
14.
J Sep Sci ; 38(21): 3758-65, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26311498

RESUMO

An effective, simple, and low-cost sample preparation method based on dispersive SPE followed by GC with MS is developed for the multianalyte determination of fragrance allergens, musks, and phthalates, at sub-ppb levels. The extraction procedure is based on a novel magnetic graphene sorbent, which is functionalized with octylamine, taking advantage of the functionalization's hydrophobic properties and π-π interactions with the analytes. Two alkyl amines, the octylamine and octadecylamine are studied to introduce alkyl chains in the basal plane of graphene. Magnetic graphene- octadecylamine is proved to be highly hydrophobic to such a degree that is hard to disperse in the bulk aqueous matrixes. Because of this behavior, its extraction efficiency for the target analytes is low. The synthesis and applicability of the magnetic graphene-octylamine as more favored sorbent are optimized in terms of the most determining experimental conditions. The detection and quantification limits, which are calculated based on S/N ratio of 3 and 10, respectively, ranged from 0.29 to 3.2 ng L(-1) and from 0.89 to 9.6, respectively. The dispersive SPE is successfully applied to routine analysis for the determination of the target analytes in samples from municipal treatment plant of Ioannina (Greece), from Pamvotis Lake and baby bathwater. The reproducibility of the spiked biological treatment plant water sample is evaluated and the relative standard deviation values range between 2.1 and 9.4%.


Assuntos
Alérgenos/análise , Ácidos Graxos Monoinsaturados/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Grafite/química , Perfumes/química , Ácidos Ftálicos/análise , Poluentes Químicos da Água/análise , Adsorção , Magnetismo , Nanopartículas , Concentração Osmolar , Extração em Fase Sólida
15.
Methods Mol Biol ; 2753: 495-502, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285362

RESUMO

In order for new drugs to enter the market, extensive studies are needed to examine toxic effects. Among others, teratogenicity studies are of paramount importance. Of even higher importance is to gain knowledge on the biological responses that take place upon drug exposure, so as to have a better understanding of the molecular mechanisms that govern developmental changes. Metabolomics is the research field that studies the changes in the chemical composition of metabolites contained within cells. Conducting metabolomics studies results in valuable information. Zebrafish is a vertebrate model organism that bridges in vivo assays and in vivo studies. In this chapter, we propose a metabolomic fingerprint assay for the study of metabolic changes in zebrafish embryos upon exposure to various drugs. The metabolome of zebrafish is extracted, and the 1H-NMR spectrum is recorded. Using open-access metabolomic databases, a list of tentative metabolites is retrieved. The presence of the tentative metabolites is further confirmed by UHPLC-HRMS. Ultimately, after a metabolic pathway analysis, the metabolic network is revealed and useful conclusions can be drawn.


Assuntos
Perciformes , Peixe-Zebra , Animais , Metabolômica , Metaboloma , Bioensaio , Bases de Dados Factuais
16.
Foods ; 13(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611333

RESUMO

The agri-food industry generates substantial amounts of waste, including by-products and residues. The increasing demand for sustainable and eco-friendly practices in the agri-food sector has sparked an interest in finding alternative uses for such waste materials. One promising approach is the utilization of waste from the agri-food industry as feed for the rearing of mealworms (Tenebrio molitor). Since agri-food waste is rich in proteins, carbohydrates, lipids, and vitamins, as well as other bioactive compounds, all of which are essential for insect growth and development, incorporating such waste into the diet of mealworms promotes sustainable insect production, reducing the economic and environmental problems associated with waste disposal. This practice can also be beneficial for the rearing of mealworms since their nutritional value can also be enhanced. To this end, various waste materials, such as fruit and vegetable peels, spent grains, and food processing residues, have been investigated as potential feed sources, leading to increased mass production, lower cost, and enhanced nutritional value. This review aims to highlight the potential of agri-food waste as a feed source for mealworms, as well as their potential to enhance their nutritional value. Furthermore, the potential applications of mealworms reared on agri-food waste are highlighted, including their potential as a sustainable protein source for human consumption and as feed ingredients in the livestock and aquaculture sectors.

17.
Plants (Basel) ; 13(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39124223

RESUMO

Hyssopus officinalis L. (HO) is, as one of the most prevalently utilized plants, used in traditional medicine to cure various diseases as well as the in food and cosmetic industries. Moreover, HO is a rich source of polyphenols with potent antioxidant properties. However, the studies on the extraction of such compounds from HO are scanty and sparse. This study aims to optimize the extraction of polyphenols and maximize the antioxidant activity in HO extracts. A comprehensive experimental design was employed, encompassing varied extraction parameters to determine the most effective ones. Alongside conventional stirring (ST), two green approaches, the ultrasonic treatment (US) and the pulsed electric field (PEF), were explored, either alone or in combination. The extracted polyphenolic compounds were identified with a high-performance liquid chromatography-diode array detector (HPLC-DAD). According to the results, the employment of ST along with an ethanolic solvent at 80 °C for 150 min seems beneficial in maximizing the extraction of polyphenols from HO, resulting in extracts with enhanced antioxidant activity. The total polyphenol was noted at 70.65 ± 2.76 mg gallic acid equivalents (GAE)/g dry weight (dw) using the aforementioned techniques, and the antioxidant activity was noted as 582.23 ± 16.88 µmol ascorbic acid equivalents (AAE)/g dw (with FRAP method) and 343.75 ± 15.61 µmol AAE/g dw (with the DPPH method). The as-prepared extracts can be utilized in the food and cosmetics industries to bestow or enhance the antioxidant properties of commercial products.

18.
Antioxidants (Basel) ; 12(8)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37627600

RESUMO

Citrus limon is among the species of the genus Citrus that dominates the world market. It is highly nutritious for humans as it contains twice the amount of the suggested daily intake of ascorbic acid and is also a good source of phenolic compounds, carotenoids, and other bioactive compounds. This study aimed to identify the optimal extraction procedures and parameters to obtain the maximum quantity of bioactive components from lemon peel by-products. Various extraction techniques, including stirring, ultrasound, and pulsed electric field, were evaluated, along with factors such as extraction time, temperature, and solvent composition. The results revealed that simple stirring for 150 min at 20 °C proved to be the most effective and practical method. The ideal solvent mixture consisted of 75% ethanol and 25% water, highlighting the crucial role of solvent composition in maximizing extraction efficiency. Among the extracted compounds were phenolics, ascorbic acid, and carotenoids. Under optimum extraction conditions, the extract was found to contain high total phenolic content (TPC) (51.2 mg of gallic acid equivalents, GAE/g dry weight), total flavonoid content (TFC) (7.1 mg of rutin equivalents, RtE/g dry weight), amounts of ascorbic acid (3.7 mg/g dry weight), and total carotenoids content (TCC) (64.9 µg of ß-carotene equivalents, CtE/g). Notably, the extracts demonstrated potent antioxidant properties (128.9 µmol of ascorbic acid equivalents, AAE/g; and 30.3 µmol of AAE/g as evidenced by FRAP and DPPH assays, respectively), making it a promising ingredient for functional foods and cosmetics. The study's implications lie in promoting sustainable practices by converting lemon peel into valuable resources and supporting human health and wellness through the consumption of natural antioxidants.

19.
Nanomaterials (Basel) ; 13(10)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37242105

RESUMO

4-Nitrophenol (4-NP) has been listed as a priority pollutant and has also been reported as a human urinary metabolite used as a marker to evaluate exposure to certain pesticides. In the work herein, a solvothermal approach is applied to the one-pot synthesis of both hydrophilic and hydrophobic fluorescent carbon nanodots (CNDs), utilizing the halophilic microalgae Dunaliella salina as a biomass precursor. Both kinds of the produced CNDs showed appreciable optical properties and quantum yields, good photostability and they were capable of probing 4-NP by quenching their fluorescence through the inner filter effect. Interestingly, a prominent 4-NP concentration-dependent redshift of the corresponding emission band of the hydrophilic CNDs was noticed, which was further exploited, for the first time, as an analytical platform. Capitalizing on these properties, analytical methods were developed and applied to a variety of matrixes, such as tap water, treated municipal wastewater and human urine. The method based on the hydrophilic CNDs (λex/λem: 330/420 nm) was linear in the range of 0.80-45.0 µM and showed acceptable recoveries (from 102.2 to 113.7%) with relative standard deviations of 2.1% (intra-day) and 2.8% (inter-day) for the quenching-based detection mode and 2.9% (intra-day) and 3.5% (inter-day) for the redshift one. The method based on the hydrophobic CNDs (λex/λem: 380/465 nm) was linear in the range of 1.4-23.0 µM, with recoveries laying within the range of 98.2-104.5% and relative standard deviations of 3.3% and 4.0% for intra-day and inter-day assays, respectively.

20.
Foods ; 12(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37297343

RESUMO

Quinces are well known for their multiple health benefits, including antioxidant, hypoglycemic, antimicrobial, anti-inflammatory, anticarcinogenic, etc., properties. Despite the widespread utilization of various plant parts, the peel has been largely ignored in the industry. In this study, we explored the effects of different extraction parameters, such as temperature, time, and composition of the extraction solvent, and techniques such as ultrasound (US) and a pulsed electric field (PEF), either alone or in combination, and optimized these parameters using a response surface methodology (RSM) to enhance the extraction of bioactive compounds such as chlorogenic acid, total polyphenols, flavonoids, and ascorbic acid from waste quince peels. From our results, it was apparent that quince peels are a great source of many bioactive compounds with high antioxidant activity. More specifically, after principal component analysis (PCA) and partial least squares (PLS) analysis, quince peels contain high levels of total polyphenols (43.99 mg gallic acid equivalents/g dw), total flavonoids (3.86 mg rutin equivalents/g dw), chlorogenic acid (2.12 mg/g dw), and ascorbic acid (543.93 mg/100 g dw), as well as antioxidant activity of 627.73 µmol AAE/g and 699.61 µmol DPPH/g as evidenced by FRAP and DPPH assays, respectively. These results emphasize the potential of utilizing quince peels as an eco-friendly and cost-effective source of bioactive compounds with various applications in the food and pharmaceutical industries for the prepared extracts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA