Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
World J Microbiol Biotechnol ; 35(1): 12, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30604276

RESUMO

Microorganisms were isolated from industrial wool scouring effluents and from the soil adjacent to the wastewater treatment lagoon, both sterols-rich environments, in order to search for novel biocatalysts able to transform cholesterol. The isolates were identified on the basis of morphological and biochemical characteristics and phylogenetic analysis. Furthermore, a rapid and accurate bacteria identification by matrix assisted laser desorption/ionization-time-of-flight mass spectrometry was carried out. Bacteria and fungi including representatives of the genera Fusarium, Talaromyces, Trichoderma, Mucor, Aspergillus, Citrobacter, Proteus, Klebsiella, Exiguobacterium, Acinetobacter, Tsukamurella, Bacillus, and Streptomyces were found and evaluated for their ability to biotransform cholesterol by whole-cell treatment system. The results show that a Trichoderma koningiopsis strain, as well as two strains of Mucor circinelloides were able to transform cholesterol into value-added products. The major products were characterized as 7ß-hydroxycholesterol, 4-cholesten-3-one, 5α,6α-epoxycholestan-3ß-ol and 5ß,6ß-epoxycholestan-3ß-ol. To the best of our knowledge, the present study is the first report of cholesterol biotransformation by representatives of Trichoderma and Mucor genera.


Assuntos
Bioprospecção/métodos , Colesterol/metabolismo , Biotransformação/fisiologia , Catálise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Trichoderma/metabolismo
3.
Chemosphere ; 349: 140889, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081521

RESUMO

The Parnaíba River is the main river in the Parnaíba Delta basin, the largest delta in the Americas. About 18 polycyclic aromatic hydrocarbons (PAHs) were identified and the environmental risk associated with the sediments was evaluated. The study found that PAHs levels ranged from 5.92 to 1521.17 ng g-1, which was classified as low to high pollution, and that there were multiple sources of pollution along the river, with pyrolytic sources predominating, mainly from urban activity such as trucking, although the influence of rural activity cannot be ruled out. PAHs correlated with black carbon and organic matter and showed high correlation with acenaphthylene, phenanthrene, pyrene, benzo(a)anthracene, chrysene, benzo(ghi)perylene, and ∑PAHs. The benzo(a)pyrene levels were classified as a risk to aquatic life because the threshold effect level and the probable effect level were exceeded. In addition, the sediments were classified as slightly contaminated with a benzo(a)pyrene toxicity equivalent value of 108.43 ng g-1. Thus, the priority level PAH exhibited carcinogenic and mutagenic activity that posed a potential risk to human health.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental , Benzo(a)pireno/análise , Brasil , Poluição Ambiental , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Medição de Risco
4.
Polymers (Basel) ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36987362

RESUMO

Approximately 400 billion PET bottles are produced annually in the world, of which from 8 to 9 million tons are discarded in oceans. This requires developing strategies to urgently recycle them. PET recycling can be carried out using the microbial hydrolysis of polymers when monomers and oligomers are released. Exploring the metabolic activity of fungi is an environmentally friendly way to treat harmful polymeric waste and obtain the production of monomers. The present study addressed: (i) the investigation of potential of strains with the potential for the depolymerization of PET bottles from different manufacturers (crystallinity of 35.5 and 10.4%); (ii) the search for a culture medium that favors the depolymerization process; and (iii) gaining more knowledge on fungal enzymes that can be applied to PET recycling. Four strains (from 100 fungal strains) were found as promising for conversion into terephthalic acid from PET nanoparticles (npPET): Curvularia trifolii CBMAI 2111, Trichoderma sp. CBMAI 2071, Trichoderma atroviride CBMAI 2073, and Cladosporium cladosporioides CBMAI 2075. The fermentation assays in the presence of PET led to the release of terephthalic acid in concentrations above 12 ppm. Biodegradation was also confirmed using mass variation analyses (reducing mass), scanning electron microscopy (SEM) that showed evidence of material roughness, FTIR analysis that showed band modification, enzymatic activities detected for lipase, and esterase and cutinase, confirmed by monomers/oligomers quantification using high performance liquid chromatography (HPLC-UV). Based on the microbial strains PET depolymerization, the results are promising for the exploration of the selected microbial strain.

5.
Braz J Microbiol ; 50(3): 633-648, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31175657

RESUMO

Recalcitrant characteristics and insolubility in water make the disposal of synthetic polymers a great environmental problem to be faced by modern society. Strategies towards the recycling of post-consumer polymers, like poly (ethylene terephthalate, PET) degradation/depolymerization have been studied but still need improvement. To contribute with this purpose, 100 fungal strains from hydrocarbon-associated environments were screened for lipase and esterase activities by plate assays and high-throughput screening (HTS), using short- and long-chain fluorogenic probes. Nine isolates were selected for their outstanding hydrolytic activity, comprising the genera Microsphaeropsis, Mucor, Trichoderma, Westerdykella, and Pycnidiophora. Two strains of Microsphaeropsis arundinis were able to convert 2-3% of PET nanoparticle into terephthalic acid, and when cultured with two kinds of commercial PET bottle fragments, they also promoted weight loss, surface and chemical changes, increased lipase and esterase activities, and led to PET depolymerization with release of terephthalic acid at concentrations above 20.0 ppm and other oligomers over 0.6 ppm. The results corroborate that hydrocarbon-associated areas are important source of microorganisms for application in environmental technologies, and the sources investigated revealed important strains with potential for PET depolymerization.


Assuntos
Fungos/metabolismo , Polietilenotereftalatos/metabolismo , Biodegradação Ambiental , Esterases/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/enzimologia , Hidrocarbonetos/química , Hidrocarbonetos/metabolismo , Lipase/metabolismo , Polietilenotereftalatos/química , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA