RESUMO
The tubulin homolog FtsZ is the major cytoskeletal protein in the bacterial cell division machinery, conserved in almost all bacteria, archaea, and chloroplasts. Bacterial FtsZ assembles spontaneously into single protofilaments, sheets, and bundles in vitro, and it also accumulates at the site of division early during cell division, where it forms a dynamic protein complex, the contractile ring or Z-ring. The biochemical properties of FtsZ proteins from many bacteria have been studied, but comparable insights into FtsZs from cyanobacteria are limited. Here, using EM and light-scattering assays, we studied the biochemical and assembly properties of SyFtsZ, the FtsZ protein from the cyanobacterial strain Synechocystis sp. PCC 6803. SyFtsZ had a slow GTPase activity of â¼0.4 GTP/FtsZ molecule/min and assembled into thick, straight protofilament bundles and curved bundles, designated toroids. The assembly of SyFtsZ in the presence of GTP occurred in two stages. The first stage consisted of the assembly of single-stranded straight protofilaments and opened circles; in the second stage, the protofilaments associated into straight protofilament bundles and toroids. In addition to these assemblies, we also observed highly curved oligomers and minirings after GTP hydrolysis or in the presence of excess GDP. The three types of protofilaments of SyFtsZ observed here provide support for the hypothesis that a constriction force due to curved protofilaments bends the membrane. In summary, our findings indicate that, unlike other bacterial FtsZ, SyFtsZ assembles into thick protofilament bundles. This bundling is similar to that of chloroplast FtsZ, consistent with its origin in cyanobacteria.