RESUMO
Point-of-care (POC) tests increasingly highlight the importance of portable, cost-effective, and visually quantitative detection of biomarkers. Herein, we developed a power-free and visual signal-readout POC sensor based on the target-triggered ultrafast gelation process. In the gelation process, the target triggered the cascade reaction catalyzed by oxidase and ferrous glycinate to produce carbon radicals that immediately initiated the rapid polymerization and cross-linking of acryloylated chondroitin sulfate and dimethylacrylamide. This highly efficient enzymatic polymerization process contributed to the ultrafast generation of chondroitin hydrogel within 1 min at 25 °C. The increase in viscosity of aqueous solution resulted from hydrogel formation was then visually measured according to the distance of solution migration on a tick-labeled pH test strip, which thus realized the quantification of a target. By utilizing glucose oxidase as an oxidase model during the gelation process, this POC sensor was successfully employed in the rapid quantitative detection of glucose without the need for any auxiliary instruments. Benefiting from the specificity and stability of the enzymatic polymerization reaction, the sensor exhibited excellent performance in the detection of glucose in clinical blood samples. Moreover, the sensor was further extended to uric acid detection and enabled accurate assay in clinical urine samples, which indicated the versatility and practicability of this sensor in the POC test.
RESUMO
BACKGROUND: Triple-negative breast cancer (TNBC) is a pathological subtype with a high mortality, and the development of inhibitors in the ubiquitin-proteasome system (UPS) component could be a novel therapeutic tool. METHODS: Triple-negative breast cancer data were obtained from The Cancer Genome Atlas (TCGA), and subtype analysis was performed by consistent clustering analysis to identify molecular subtypes of TNBC according to UPS characteristics. Differential analysis, COX and least absolute shrinkage and selection operator (LASSO) COX regression analyses were performed to select genes associated with overall survival in TNBC. The final prognostic model (UPS score) was determined using the LASSO COX model. The model performance was assessed using receiver operating characteristic (ROC) curves and survival curves. In addition, the results of the UPS score on analyzing the abundance of immune cell infiltration and immunotherapy were explored. Finally, we developed a nomogram for TNBC survival prediction. RESULTS: Two UPS subtypes (UPSMS1 and UPSMS2) showing significant survival differences were classified. COX regression analysis on differentially expressed genes in UPSMS1 and UPSMS2 filtered five genes that affected overall survival. Based on the regression coefficients and expression data of the five genes, we built a prognostic assessment system (UPS score). The UPS score showed consistent prognostic and therapeutic guidance values. Finally, the ROC curve of the nomogram and UPS score showed the highest predictive efficacy compared with traditional clinical prognostic indicators. CONCLUSION: The UPS score represented a promising prognostic tool to predict overall survival and immune status and guide personalized treatment selection in TNBC patients, and this study may provide a more practical alternative for clinical monitoring and management of TNBC.
Assuntos
Complexo de Endopeptidases do Proteassoma , Neoplasias de Mama Triplo Negativas , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/terapia , Citoplasma , Imunoterapia , UbiquitinasRESUMO
High-level ab initio calculations are conducted for studying the kinetics of three linear pentanol radicals generated through H-atom abstraction reactions. The species involved are optimized using the M06-2X/6-311++G(d,p) level of theory, while a relaxed scan at the M06-2X/6-31g level of theory with 10° increments is used for the hindrance potential for low-frequency torsional modes. Single-point energies for all stationary points are obtained through the QCISD(T) and MP2 methods in combination with cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets, which can be extrapolated to the complete basis set (CBS) limit. The rate constants and branching ratios for isomerization and decomposition reactions are computed over a temperature range of 250-2000 K and a pressure range of 0.01-100 atm. Isomerization reactions are dominant at low temperatures, while decomposition reactions are more dominant at high temperatures. The branching ratio of the isomerization reaction exhibits a slight decrease with increasing pressure, while the trend for decomposition reactions depends on the type of the breaking bond. Based on the calculations for five branched pentanol radicals in part I, kinetics of linear and branched pentanol radicals are compared in this work and the results reveal that, for the same kind of ß-scission reaction at similar positions of linear and branched pentanol radicals, the rate constants of branched ones are faster than those of linear ones at low temperatures. The hydroxyl group adjacent to the breaking bond can increase the ß-scission reaction rate constants, while the effect can be ignored when the hydroxyl group is not adjacent to the breaking bond. Moreover, compared to when the hydroxyl group is located in the middle of the carbon chain, its positioning at the chain's end yields a more noticeable impact on the products and rate constants of C-O bond and O-H bond ß-scission reactions. Besides, when incorporating calculated rate constants into the CRECK model, the updated mechanism shows a better performance for ignition delay times of 1-pentanol in the NTC range but exhibits lower reactivity at higher temperatures. The simulation of speciation profiles also shows better agreement with the experimental data obtained using a flow reactor.
RESUMO
The chemical kinetic studies of hydrogen atom (H-atom) abstraction reactions by hydroperoxyl (HȮ2) radicals from five branched pentanol isomers, including 3-methyl-1-butanol, 2-methyl-1-butanol, 1,1-dimethyl-1-propanol, 1,2-dimethyl-1-propanol, and 2,2-dimethyl-1-propanol were investigated systematically through high-level ab initio calculations. Geometry optimization, frequency analysis, and zero-point energy (ZPE) corrections were performed for six reactants, twenty-three transition states (TSs), and twenty-four products at the M06-2X/6-311++G(d,p) level of theory. The intrinsic reaction coordinate calculation was performed at the same level of theory to confirm the transition state connection. The one-dimensional hindered rotor treatment for low-frequency torsional modes was also treated at the M06-2X/6-311++G(d,p) level of theory. The QCISD(T)/CBS level of theory was used to calculate the single-point energies for the species whose T1 diagnostic value was lower than 0.035. At the same time, the CASPT2/CBS level of theory was used to calculate the single-point energies for the channel in which the T1 diagnostic value of transition states was greater than 0.035. Rate constants for the H-atom abstraction reactions from the five branched pentanol isomers by HȮ2 radicals were calculated by using conventional transition state theory with asymmetric Eckart tunneling corrections in the temperature range of 500-2000 K. Rate constants and branching ratios for the title reactions and the rate rules for ten different H-atom abstraction types were investigated. Temperature-dependent thermochemistry properties for all reactants and products were calculated by the composite methods of G3/G4/CBS-QB3/CBS-APNO, which were in good agreement with the data available in the literature. Rate constants for the H-atom abstraction reactions by HȮ2 radical from branched pentanol isomers were investigated in this work as part I, and those for linear pentanol isomers will be analyzed in part II. All the calculated kinetics and thermochemistry data can be utilized in the model development for branched pentanol isomers oxidation.
RESUMO
To address the challenges faced in the prediction of rolling bearing life, where temporal signals are affected by noise, making fault feature extraction difficult and resulting in low prediction accuracy, a method based on optimal time-frequency spectra and the DenseNet-ALSTM network is proposed. Firstly, a signal reconstruction method is introduced to enhance vibration signals. This involves using the CEEMDAN deconvolution method combined with the Teager energy operator for signal reconstruction, aiming to denoise the signals and highlight fault impacts. Subsequently, a method based on the snake optimizer (SO) is proposed to optimize the generalized S-transform (GST) time-frequency spectra of the enhanced signals, obtaining the optimal time-frequency spectra. Finally, all sample data are transformed into the optimal time-frequency spectrum set and input into the DenseNet-ALSTM network for life prediction. The comparison experiment and ablation experiment show that the proposed method has high prediction accuracy and ideal prediction performance. The optimization terms used in different contexts in this paper are due to different optimization methods, specifically the CEEMDAN method.
RESUMO
Thermophotovoltaic (TPV) generators provide continuous and high-efficiency power output by utilizing local thermal emitters to convert energy from various sources to thermal radiation matching the bandgaps of photovoltaic cells. Lack of effective guidelines for thermal emission control at high temperatures, poor thermal stability, and limited fabrication scalability are the three key challenges for the practical deployment of TPV devices. Here we develop a hierarchical sequential-learning optimization framework and experimentally realize a 6â³ module-scale polaritonic thermal emitter with bandwidth-controlled thermal emission as well as excellent thermal stability at 1473 K. The 300 nm bandwidth thermal emission is realized by a complex photon polariton based on the superposition of Tamm plasmon polariton and surface plasmon polariton. We experimentally achieve a spectral efficiency of 65.6% (wavelength range of 0.4-8 µm) with statistical deviation less than 4% over the 6â³ emitter, demonstrating industrial-level reliability for module-scale TPV applications.
RESUMO
Potassium-ion batteries (PIBs) have become one of the promising candidates for electrochemical energy storage that can provide low-cost and high-performance advantages. The poor cyclability and rate capability of PIBs are due to the intensive structural change of electrode materials during battery operation. Carbon-based materials as anodes have been successfully commercialized in lithium- and sodium-ion batteries but is still struggling in potassium-ion battery field. This work conducts structural engineering strategy to induce anionic defects within the carbon structures to boost the kinetics of PIBs anodes. The carbon framework provides a strong and stable structure to accommodate the volume variation of materials during cycling, and the further phosphorus doping modification is shown to enhance the rate capability. This is found due to the change of the pore size distribution, electronic structures, and hence charge storage mechanism. The optimized electrode in this work shows a high capacity of 175 mAh g-1 at a current density of 0.2 A g-1 and the enhancement of rate performance as the PIB anode (60% capacity retention with the current density increase of 50 times). This work, therefore provides a rational design for guiding future research on carbon-based anodes for PIBs.
RESUMO
DNA self-assembly has been developed as a kind of robust signal amplification strategy, but most of reported assembly pathways are programmed to amplify signal in one direction. Herein, based on mutual-activated cascade cycle of hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA), a closed cycle circuit (CCC) based DNA machine is developed for sensitive logic operation and molecular recognition. Benefiting from the synergistically accelerated signal amplification, the closed cyclic DNA machine enabled the logic computing with strong and significant output signals even at weak input signals. The typical logic operations such as OR, YES, AND, INHIBIT, NOR, and NAND gate, are conveniently and clearly executed with this DNA machine through rational design of the input and computing elements. Moreover, by integrating the target recognition module with the CCC module, the proposed DNA machine is further employed in the homogeneous detection of apurinic/apyrimidinic endonuclease 1 (APE1). The precise recognition and exponential signal amplification facilitated the highly selective and sensitive detection of APE1 with limit of detection (LOD) of 7.8 × 10-5 U mL-1 . Besides, the normal cells and tumor cells are distinguished unambiguously by this method according to the detected concentration difference of cellular APE1, which indicates the robustness and practicability of this method.
Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , DNA , Hibridização de Ácido Nucleico , Lógica , Limite de DetecçãoRESUMO
We propose a scheme to achieve controllable nonreciprocal behavior in asymmetric graphene metasurfaces composed of a continuous graphene sheet and a poly crystalline silicon slab with periodic grooves of varying depths on each side. The proposed structure exhibits completely asymmetric reflection in opposite directions in the near-infrared range, which is attributed to the pronounced structural asymmetry and its accompanying nonlinear effects. The obtained nonreciprocal reflection ratio, reaching an impressive value of 21.27â dB, combined with a minimal insertion loss of just -0.76â dB, highlights the remarkable level of nonreciprocal efficiency achieved by this design compared to others in its category. More importantly, the proposed design can achieve dynamic tunability by controlling the incident field intensity and the graphene Fermi level. Our design highlights a potential means for creating miniaturized and integratable nonreciprocal optical components in reflection mode, which can promote the development of the integrated isolators, optical logic circuits, and bias-free nonreciprocal photonics.
RESUMO
Theoretical investigations on the kinetics of decomposition and isomerization reactions for five types of branched pentanol radicals are carried out in this work. The M06-2X/6-311++G(d,p) level of theory was used to optimize the geometries of all reactants, transition states, and products, while the hindrance potentials for the lower frequency modes in all of the species were obtained through a relaxed scan with an increment of 10° at the M06-2X/6-31G level of theory. Single-point energies of all species were determined at the QCISD(T)/cc-pVDZ, TZ level of theories with basis set corrections from MP2/cc-pVDZ, TZ, QZ methods. The RRKM/master equation was solved to calculate the pressure- and temperature-dependent rate coefficients for all channels in the pressure range of 0.01-100 atm over 250-2000 K. Pressure and temperature-dependent branching fractions of key species produced from pentanol radicals show that most of the pentanol radical isomers tend to isomerize to alkoxy radicals via a six-membered-ring or five-membered-ring transition state at low temperatures, producing ketones or aldehydes. At higher temperatures, the ß-scission reactions are the main reaction channels for the consumption of pentanol radicals. A weak pressure dependence has been found for all isomerization reactions, and it becomes more and more important as pressure increases. The pressure dependence trends are different for the ß-scission reactions of different branched pentanol radicals. In part I, the results for branched pentanol radical isomers are presented in detail, while in part II the results for linear pentanol radical isomers will be discussed.
RESUMO
Diabetic nephropathy (DN) affects around 40% of people with diabetes, the final outcome of which is end-stage renal disease. The deficiency of autophagy and excessive oxidative stress have been found to participate in the pathogenesis of DN. Sinensetin (SIN) has been proven to have strong antioxidant capability. However, the effect of SIN on DN has not been studied. We examined the effect of SIN on cell viability and autophagy in the podocyte cell line, MPC5 cells, treated with high glucose (HG). For in vivo studies, DN mice models were established by intraperitoneal injected with streptozotocin (40 mg/kg) for 5 consecutive days and fed with a 60% high-fat diet, and SIN was given (10, 20, and 40 mg/kg) for 8 weeks via intraperitoneal injection. The results showed that SIN could protect MPC5 cells against HG-induced damage and significantly improve the renal function of DN mice. Moreover, SIN remarkably restored the autophagy activity of MPC5 cells which was inhibited under HG conditions. Consistent with this, SIN efficiently improved autophagy in the kidney tissue of DN mice. In brief, our findings demonstrated the protective effect of SIN on DN via restoring the autophagic function, which might provide a basis for drug development.
RESUMO
Aqueous zinc-ion batteries have drawn increasing attention due to the intrinsic safety, cost-effectiveness and high energy density. However, parasitic reactions and non-uniform dendrite growth on the Zn anode side impede their application. Herein, a multifunctional additive, ammonium dihydrogen phosphate (NHP), is introduced to regulate uniform zinc deposition and to suppress side reactions. The results show that the NH4 + tends to be preferably absorbed on the Zn surface to form a "shielding effect" and blocks the direct contact of water with Zn. Moreover, NH4 + and (H2 PO4 )- jointly maintain pH values of the electrode-electrolyte interface. Consequently, the NHP additive enables highly reversible Zn plating/stripping behaviors in Zn//Zn and Zn//Cu cells. Furthermore, the electrochemical performances of Zn//MnO2 full cells and Zn//active carbon (AC) capacitors are improved. This work provides an efficient and general strategy for modifying Zn plating/stripping behaviors and suppressing side reactions in mild aqueous electrolyte.
RESUMO
A divergent radical nitration of alkylidenecyclopropanes (ACPs) and alkylidenecyclobutanes (ACBs) with Fe(NO3)3·9H2O or AgNO2 has been achieved, affording three categories of products including ß-nitro alcohol, α-nitro ketone and nitro nitratosation products with yields up to 90%. Particularly, the cyclopropyl and cyclobutyl rings were conserved in the products. The applicability of this method was demonstrated by the scale-up experiment and reduction of the nitro into an amino group. Preliminary mechanistic studies suggested that the nitro radical was involved in the reaction process.
Assuntos
Ciclobutanos , Ciclopropanos , Nitratos , Óxidos de Nitrogênio , Oxirredução , Estresse OxidativoRESUMO
Bladder cancer is a common malignant tumor of the genitourinary system, with the primary cause of death being metastasis. The most common metastatic sites are the lymph nodes, liver, lung, bone, peritoneum, pleura, kidney, adrenal gland, and the intestine. Brain and heart metastases are rare. In this report, we describe a patient who had pulmonary lymph node metastases more than a year after being diagnosed with bladder cancer, followed by brain and cardiac metastases more than two years later. Following the failure of standard first-line chemotherapy, the patient accepted 6 cycles of tislelizumab immunotherapy. The re-examination revealed that the bilateral frontal brain metastases had vanished, the right temporal lobe metastases had been greatly decreased, the neurological symptoms had been alleviated, and the cardiac metastases had disappeared. This is a rare clinical case with encouraging effects of tislelizumab and can serve as a model for the treatment of similar patients.
Assuntos
Linfonodos , Neoplasias da Bexiga Urinária , Humanos , Linfonodos/patologia , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/patologia , Pulmão/patologia , Imunoterapia , Encéfalo/patologiaRESUMO
We have proposed and experimentally demonstrated a sapphire-derived fiber (SDF) and silica capillary-based compound Fabry-Pérot interferometer (FPI) for high-pressure and high-temperature sensing. The SDF owns high alumina dopant concentration core, which can generate a mullite crystallization region during an arc discharge process. The crystallization region acts as a reflective interface to form one FPI in the SDF. The other FPI contains an air cavity constructed by the silica capillary and is used for high-pressure sensing. Both gas pressure within a range from 0â MPa to 4â MPa and temperature within a range from 20°C to 700°C are measured. Experimental results show that the wavelength shift of the FPI versus the applied pressure is linear at each tested temperature. The pressure sensitivity is measured to be 5.19â nm/MPa at a high temperature of 700°C, and the linear responses show excellent repeatability with linearity of 0.999. Meanwhile, the proposed FPI can stably function at a high temperature of 700°C with a temperature sensitivity of 0.013â nm/°C. The proposed FPI sensor provides a promising candidate for simultaneous measurement of high pressure and high temperature in extreme conditions.
RESUMO
A novel three-dimensional (3D) bifunctional electrocatalyst, CoNi alloy nanoparticle and carbon nanotube decorated N-doped carbon nanosheet arrays on carbon cloth (CoNi alloy/NCNSAs/CC) derived from polymetallic organic frameworks, is firstly prepared. The CoNi alloy/NCNSAs/CC-800 fabricated by pyrolyzing at 800 °C exhibits an oxygen reduction reaction (ORR, limiting current density) of 6.5 mA cm-2 and a superior oxygen evolution reaction (OER, at 10 mA cm-2) of 1.51 V, as well as a smaller potential difference of 0.676 V between OER and ORR half-wave potential, outperforming previous self-supporting cathodes. Flexible Zn-air batteries (FZABs) assembled with the CoNi alloy/NCNSAs/CC-800 exhibit higher energy density (98.8 mW cm-2) and higher capacity (879 mAh g-1), as well as excellent mechanical cycle ability (lower voltage gap of 0.66 V during the charge/discharge cycles at flat and folded state), significantly outstripping all other FZABs with self-supporting electrodes currently reported. Such a remarkable performance is ascribed to the 3D hierarchical nanostructure which promotes mass transport, the higher graphitization facilitating electronic mobility and the evenly dispersed active sites which accelerate kinetic reactions. So CoNi alloy/NCNSAs/CC-800 is a promising cathode candidate for ideal wearable energy devices and has great potential application in the field of electrochemical energy storage and conversion.
RESUMO
Previous studies suggested that diets containing high levels of histamine influenced digestive system of aquatic animals. In addition, the exogenous histamine was first detoxified by diamine oxidase in the intestine, while the rest of histamine was further detoxified in the liver. Thus, based on the evidence from the previous studies, we hypothesized that high levels of histamine may lead to damage on liver of the aquatic animals. Here, in current attempt, we sought to investigate the toxic effect of histamine on yellow catfish (Pelteobagrus fulvidraco) liver physiology and pathogenesis. In the present study, yellow catfish were fed for 56 days on diets supplemented with 1000â¯mgâ¯kg-1 histamine (His) or a basal diet as the control group (Con). A significant change on the morphology of the intestine and liver was observed, followed with an induction of serum activity of aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Furthermore, the transcriptomic analysis was performed to gain an overview of the gene expression profile in liver between control and histamine supplemented groups. Through the bioinformatics analysis, 431 differentially expressed genes were identified. Among these genes, Gene Ontology enrichment analysis (GO) suggests that immune-related genes are significantly dysregulated. In addition, TNF signaling pathway is enriched in Kyoto Encyclopedia of Genes and Genomes analysis (KEGG), and is also the dominant pathway in immune system, suggesting that the inflammatory response and apoptosis of hepatocytes are induced by exogenous histamine.
Assuntos
Peixes-Gato , Doenças dos Peixes/imunologia , Histamina/metabolismo , Inflamação/veterinária , Hepatopatias/veterinária , Ração Animal/análise , Animais , Análise Química do Sangue/veterinária , Dieta/veterinária , Suplementos Nutricionais/análise , Doenças dos Peixes/induzido quimicamente , Doenças dos Peixes/patologia , Perfilação da Expressão Gênica/veterinária , Histamina/administração & dosagem , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/patologia , Fígado/imunologia , Fígado/patologia , Hepatopatias/etiologia , Hepatopatias/imunologia , Hepatopatias/patologiaRESUMO
BACKGROUND: Cecal ligation and puncture (CLP) is the most commonly used model to simulate human polymicrobial sepsis. However, the severity of CLP is difficult to be standardized across different laboratories. The aim of the present study was to evaluate the influence of ligated cecal volume and length on mortality in mouse CLP model. METHODS: Cecal length and volume were measured from 120 Kunming mice subjected to CLP or sham operation. According to cecal volume, mice were divided into three groups, volume0.0â¼0.2 (0.0 cm(3)-0.2 cm(3)), volume0.2â¼0.4 (0.2 cm(3)-0.4 cm(3)), and volume>0.4 (larger than 0.4 cm(3)). The contents of cytokines, including interleukin-1ß, interleukin-6, and TNF-α, were measured at 3 h after surgery. The blood bacterial load and oxidative stress indicators (including malondialdehyde and superoxide dismutase) were measured at 12 h after surgery. RESULTS: There was no significant difference on 72-h survival rate between the mice with cecum longer than 2 cm and shorter than 2 cm. Compared to the other volume groups, volume>0.4 group showed significantly increased blood bacterial load, malondialdehyde levels in lung and liver, and pro-inflammatory cytokines in serum. Surprisingly, the survival rate in volume>0.4 (0%) group showed significant difference from those of volume0.0â¼0.2 group (40%) and volume0.2â¼0.4 group (40%). CONCLUSIONS: The mice in volume>0.4 group have much serious inflammatory reaction and are easier to die. As the proportion of volume>0.4 mice is near 20%, it can have large influence on most of the related studies using this CLP model.
Assuntos
Ceco/anatomia & histologia , Ceco/cirurgia , Modelos Animais de Doenças , Camundongos/cirurgia , Sepse/mortalidade , Animais , Biomarcadores/metabolismo , Ligadura/métodos , Masculino , Camundongos/anatomia & histologia , Tamanho do Órgão , Distribuição Aleatória , Sepse/etiologia , Sepse/metabolismoRESUMO
Lactate dehydrogenase (LDH) is a terminal enzyme in anaerobic glycolytic pathway. It widely exists in various organisms and is in charge of converting the glycolysis product pyruvic acid to lactic acid. Most parasites, including Clonorchis sinensis, predominantly depend on glycolysis to provide energy. Bioinformatic analysis predicts that the LDHs from many species have more than one transmembrane region, suggesting that it may be a membrane protein. C. sinensis LDH (CsLDH) has been confirmed as a transmembrane protein mainly located in the tegument. The antibodies against CsLDH can inhibit the worm's energy metabolism, kill the worm, and may have the same effects on human cancer cells. In this study, we cloned and characterized human LDHA (HsLDHA), HsLDHB, and CsLDH. Semi-quantitative real-time RCP showed that HsLDHB only existed in hepatocarcinoma cell SMMC-7721. Confocal microscopy and Western blot experiments revealed that HsLDHB was localized in the plasma membrane of SMMC-7721 cells, and the antibodies against CsLDH could cross-react with it. This cross-reaction could inhibit the enzymatic activity of HsLDHB. The cancer cells co-cultured with anti-CsLDH sera showed a significant decrease in cell proliferation rate and increases in caspase 9 and reactive oxygen species (ROS) levels. Therefore, anti-CsLDH antibodies can induce the apoptosis of cancer cells SMMC-7721 and may serve as a new tool to inhibit tumor.
Assuntos
Anticorpos Anti-Helmínticos/imunologia , Clonorchis sinensis/imunologia , L-Lactato Desidrogenase/imunologia , Sequência de Aminoácidos , Animais , Apoptose , Linhagem Celular Tumoral , Membrana Celular/enzimologia , Clonorchis sinensis/enzimologia , Reações Cruzadas , Humanos , L-Lactato Desidrogenase/genética , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Ratos Sprague-Dawley , Proteínas Recombinantes , Alinhamento de SequênciaRESUMO
In this study, we compared the efficacies and adverse effects of quinine plus antibiotics and other anti-malaria drugs on treating uncomplicated falciparum malaria. By systematically searching the major databases PubMed, Embase, and the Cochrane Library, 14 randomized controlled trials (RCTs) including 1996 cases were identified. Then, we performed a systematic review and cumulative meta-analysis on these data. The primary outcome of these treatments was parasite failure at day 28. There was no significant difference between quinine plus antibiotic therapy (QACT) and artemisinin-based therapies (odds ratio (OR) 0.69, 95 % confidence interval (CI) 0.28 to 1.71) or non-artemisinin-based therapies except quinine monotherapy and chloroquine monotherapy (OR 0.56, 95 % CI 0.18 to 1.74). The secondary outcome was the adverse effects within 28 days, including nausea, dizziness, vomiting, diarrhea, abdominal pain, headache, and tinnitus. QACT significantly increased the risk of tinnitus compared with artemisinin-based therapies (OR 111.65, 95 % CI 12.63 to 986.87) and non-artemisinin-based therapies (OR 48.16, 95 % CI 16.23 to 142.92). Vomiting was more frequently reported in QACT compared with non-artemisinin-based therapies (OR 2.02, 95 % CI 1.14 to 3.56). This meta-analysis suggests that almost all regimens have equivalent treatment effect at the 28th day. However, the patients with QACT had a higher chance to suffer from vomiting and tinnitus. Therefore, QACT does not have significant advantage on treating uncomplicated falciparum malaria.