Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Neurosci ; 37(33): 7803-7810, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28698387

RESUMO

Visual spatial attention has been studied in humans with both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) individually. However, due to the intrinsic limitations of each of these methods used alone, our understanding of the systems-level mechanisms underlying attentional control remains limited. Here, we examined trial-to-trial covariations of concurrently recorded EEG and fMRI in a cued visual spatial attention task in humans, which allowed delineation of both the generators and modulators of the cue-triggered event-related oscillatory brain activity underlying attentional control function. The fMRI activity in visual cortical regions contralateral to the cued direction of attention covaried positively with occipital gamma-band EEG, consistent with activation of cortical regions representing attended locations in space. In contrast, fMRI activity in ipsilateral visual cortical regions covaried inversely with occipital alpha-band oscillations, consistent with attention-related suppression of the irrelevant hemispace. Moreover, the pulvinar nucleus of the thalamus covaried with both of these spatially specific, attention-related, oscillatory EEG modulations. Because the pulvinar's neuroanatomical geometry makes it unlikely to be a direct generator of the scalp-recorded EEG, these covariational patterns appear to reflect the pulvinar's role as a regulatory control structure, sending spatially specific signals to modulate visual cortex excitability proactively. Together, these combined EEG/fMRI results illuminate the dynamically interacting cortical and subcortical processes underlying spatial attention, providing important insight not realizable using either method alone.SIGNIFICANCE STATEMENT Noninvasive recordings of changes in the brain's blood flow using functional magnetic resonance imaging and electrical activity using electroencephalography in humans have individually shown that shifting attention to a location in space produces spatially specific changes in visual cortex activity in anticipation of a stimulus. The mechanisms controlling these attention-related modulations of sensory cortex, however, are poorly understood. Here, we recorded these two complementary measures of brain activity simultaneously and examined their trial-to-trial covariations to gain insight into these attentional control mechanisms. This multi-methodological approach revealed the attention-related coordination of visual cortex modulation by the subcortical pulvinar nucleus of the thalamus while also disentangling the mechanisms underlying the attentional enhancement of relevant stimulus input and those underlying the concurrent suppression of irrelevant input.


Assuntos
Atenção/fisiologia , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Estimulação Luminosa/métodos , Processamento Espacial/fisiologia , Córtex Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Desempenho Psicomotor , Adulto Jovem
2.
Neuroimage ; 146: 600-608, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27640748

RESUMO

Previous studies have observed lower visual cortex activation for visual processing in cochlear implant (CI) users compared to normal hearing controls, while others reported enhanced visual speechreading abilities in CI users. The present work investigated whether lower visual cortical activation for visual processing can be explained by a more efficient visual sensory encoding in CI users. Specifically, we investigated whether CI users show enhanced stimulus-specific adaptation for visual stimuli compared to controls. Auditory sensory adaptation was also investigated to explore the sensory specificity of the predicted effect. Twenty post-lingually deafened adult CI users and twenty age-matched controls were presented with repeated visual and auditory stimuli during simultaneous acquisition of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). By integrating EEG and fNIRS signals we found significantly enhanced visual adaptation and lower visual cortex activation in CI users compared to controls. That is, responses to repeated visual stimuli decreased more prominently in CI users than in controls. The results suggest that CI users process visual stimuli more efficiently than controls.


Assuntos
Adaptação Fisiológica , Córtex Auditivo/fisiopatologia , Implantes Cocleares , Surdez/fisiopatologia , Córtex Visual/fisiopatologia , Estimulação Acústica , Adulto , Idoso , Percepção Auditiva/fisiologia , Surdez/metabolismo , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Espectroscopia de Luz Próxima ao Infravermelho , Córtex Visual/metabolismo , Percepção Visual/fisiologia , Adulto Jovem
3.
Neural Plast ; 2016: 4382656, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26819766

RESUMO

Cochlear implant (CI) users show higher auditory-evoked activations in visual cortex and higher visual-evoked activation in auditory cortex compared to normal hearing (NH) controls, reflecting functional reorganization of both visual and auditory modalities. Visual-evoked activation in auditory cortex is a maladaptive functional reorganization whereas auditory-evoked activation in visual cortex is beneficial for speech recognition in CI users. We investigated their joint influence on CI users' speech recognition, by testing 20 postlingually deafened CI users and 20 NH controls with functional near-infrared spectroscopy (fNIRS). Optodes were placed over occipital and temporal areas to measure visual and auditory responses when presenting visual checkerboard and auditory word stimuli. Higher cross-modal activations were confirmed in both auditory and visual cortex for CI users compared to NH controls, demonstrating that functional reorganization of both auditory and visual cortex can be identified with fNIRS. Additionally, the combined reorganization of auditory and visual cortex was found to be associated with speech recognition performance. Speech performance was good as long as the beneficial auditory-evoked activation in visual cortex was higher than the visual-evoked activation in the auditory cortex. These results indicate the importance of considering cross-modal activations in both visual and auditory cortex for potential clinical outcome estimation.


Assuntos
Córtex Auditivo/fisiopatologia , Implantes Cocleares , Perda Auditiva Neurossensorial/fisiopatologia , Plasticidade Neuronal/fisiologia , Córtex Visual/fisiopatologia , Estimulação Acústica , Adulto , Idoso , Mapeamento Encefálico/métodos , Implante Coclear , Feminino , Neuroimagem Funcional/métodos , Perda Auditiva Neurossensorial/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Percepção da Fala/fisiologia , Percepção Visual/fisiologia , Adulto Jovem
4.
Brain Topogr ; 28(5): 710-725, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25589030

RESUMO

Functional near-infrared spectroscopy (fNIRS) has been proven reliable for investigation of low-level visual processing in both infants and adults. Similar investigation of fundamental auditory processes with fNIRS, however, remains only partially complete. Here we employed a systematic three-level validation approach to investigate whether fNIRS could capture fundamental aspects of bottom-up acoustic processing. We performed a simultaneous fNIRS-EEG experiment with visual and auditory stimulation in 24 participants, which allowed the relationship between changes in neural activity and hemoglobin concentrations to be studied. In the first level, the fNIRS results showed a clear distinction between visual and auditory sensory modalities. Specifically, the results demonstrated area specificity, that is, maximal fNIRS responses in visual and auditory areas for the visual and auditory stimuli respectively, and stimulus selectivity, whereby the visual and auditory areas responded mainly toward their respective stimuli. In the second level, a stimulus-dependent modulation of the fNIRS signal was observed in the visual area, as well as a loudness modulation in the auditory area. Finally in the last level, we observed significant correlations between simultaneously-recorded visual evoked potentials and deoxygenated hemoglobin (DeoxyHb) concentration, and between late auditory evoked potentials and oxygenated hemoglobin (OxyHb) concentration. In sum, these results suggest good sensitivity of fNIRS to low-level sensory processing in both the visual and the auditory domain, and provide further evidence of the neurovascular coupling between hemoglobin concentration changes and non-invasive brain electrical activity.


Assuntos
Estimulação Acústica , Eletroencefalografia/métodos , Estimulação Luminosa , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto , Córtex Auditivo/fisiologia , Mapeamento Encefálico/métodos , Potenciais Evocados Auditivos , Potenciais Evocados Visuais , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Acoplamento Neurovascular/fisiologia , Córtex Visual/fisiologia
5.
IEEE Trans Biomed Circuits Syst ; 16(6): 1008-1020, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36374872

RESUMO

This paper presents an energy-autonomous wireless soil pH and electrical conductance measurement IC powered by soil microbial and photovoltaic energy. The chip integrates highly efficient dual-input, dual-output power management units, sensor readout circuits, a wireless receiver, and a transmitter. The design scavenges ambient energy with a maximal power point tracking mechanism while achieving a peak efficiency of 81.3% and the efficiency is more than 50% over the 0.05-14 mW load range. The sensor readout IC achieves a sensitivity of -8.8 kHz/pH and 6 kHz·m/S, a noise floor of 0.92 x 10-3 pH value, and 1.4 mS/m conductance. To avoid interference, a 433 MHz transceiver incorporates chirp modulation and on-off keying (OOK) modulation for data uplink and downlink communication. The receiver sensitivity is -80 dBm, and the output transmission power is -4 dBm. The uplink data rate is 100 kb/s using burst chirp modulation and gated Class E PA, while the downlink data rate is 10 kb/s with a self-frequency tracking mixer-first receiver.


Assuntos
Microbiologia do Solo , Tecnologia sem Fio , Desenho de Equipamento , Amplificadores Eletrônicos , Concentração de Íons de Hidrogênio
6.
Hear Res ; 343: 128-137, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27473503

RESUMO

With the advances of cochlear implant (CI) technology, many deaf individuals can partially regain their hearing ability. However, there is a large variation in the level of recovery. Cortical changes induced by hearing deprivation and restoration with CIs have been thought to contribute to this variation. The current review aims to identify these cortical changes in postlingually deaf CI users and discusses their maladaptive or adaptive relationship to the CI outcome. Overall, intra-modal and cross-modal reorganization patterns have been identified in postlingually deaf CI users in visual and in auditory cortex. Even though cross-modal activation in auditory cortex is considered as maladaptive for speech recovery in CI users, a similar activation relates positively to lip reading skills. Furthermore, cross-modal activation of the visual cortex seems to be adaptive for speech recognition. Currently available evidence points to an involvement of further brain areas and suggests that a focus on the reversal of visual take-over of the auditory cortex may be too limited. Future investigations should consider expanded cortical as well as multi-sensory processing and capture different hierarchical processing steps. Furthermore, prospective longitudinal designs are needed to track the dynamics of cortical plasticity that takes place before and after implantation.


Assuntos
Córtex Auditivo/fisiopatologia , Implante Coclear/instrumentação , Implantes Cocleares , Surdez/reabilitação , Audição , Pessoas com Deficiência Auditiva/reabilitação , Percepção da Fala , Adaptação Fisiológica , Adaptação Psicológica , Vias Auditivas/fisiopatologia , Surdez/diagnóstico , Surdez/fisiopatologia , Surdez/psicologia , Humanos , Plasticidade Neuronal , Pessoas com Deficiência Auditiva/psicologia , Reconhecimento Psicológico , Recuperação de Função Fisiológica , Inteligibilidade da Fala
7.
Sci Rep ; 7(1): 10043, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855675

RESUMO

Previous studies have reported increased cross-modal auditory and visual cortical activation in cochlear implant (CI) users, suggesting cross-modal reorganization of both visual and auditory cortices in CI users as a consequence of sensory deprivation and restoration. How these processes affect the functional connectivity of the auditory and visual system in CI users is however unknown. We here investigated task-induced intra-modal functional connectivity between hemispheres for both visual and auditory cortices and cross-modal functional connectivity between visual and auditory cortices using functional near infrared spectroscopy in post-lingually deaf CI users and age-matched normal hearing controls. Compared to controls, CI users exhibited decreased intra-modal functional connectivity between hemispheres and increased cross-modal functional connectivity between visual and left auditory cortices for both visual and auditory stimulus processing. Importantly, the difference between cross-modal functional connectivity for visual and for auditory stimuli correlated with speech recognition outcome in CI users. Higher cross-modal connectivity for auditory than for visual stimuli was associated with better speech recognition abilities, pointing to a new pattern of functional reorganization that is related to successful hearing restoration with a CI.


Assuntos
Percepção Auditiva , Córtex Cerebral/fisiologia , Implantes Cocleares/efeitos adversos , Conectoma , Percepção Visual , Adulto , Idoso , Eletroencefalografia , Potenciais Evocados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espectroscopia de Luz Próxima ao Infravermelho
8.
Neurobiol Aging ; 49: 183-197, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27818001

RESUMO

Stroke frequently results in motor impairment. Motor imagery (MI), the mental practice of movements, has been suggested as a promising complement to other therapeutic approaches facilitating motor rehabilitation. Of particular potential is the combination of MI with neurofeedback (NF). However, MI NF protocols have been largely optimized only in younger healthy adults, although strokes occur more frequently in older adults. The present study examined the influence of age on the neural correlates of MI supported by electroencephalogram (EEG)-based NF and on the neural correlates of motor execution. We adopted a multimodal neuroimaging framework focusing on EEG-derived event-related desynchronization (ERD%) and oxygenated (HbO) and deoxygenated hemoglobin (HbR) concentrations simultaneously acquired using functional near-infrared spectroscopy (fNIRS). ERD%, HbO concentration and HbR concentration were compared between younger (mean age: 24.4 years) and older healthy adults (mean age: 62.6 years). During MI, ERD% and HbR concentration were less lateralized in older adults than in younger adults. The lateralization-by-age interaction was not significant for movement execution. Moreover, EEG-based NF was related to an increase in task-specific activity when compared to the absence of feedback in both older and younger adults. Finally, significant modulation correlations were found between ERD% and hemodynamic measures despite the absence of significant amplitude correlations. Overall, the findings suggest a complex relationship between age and movement-related activity in electrophysiological and hemodynamic measures. Our results emphasize that the age of the actual end-user should be taken into account when designing neurorehabilitation protocols.


Assuntos
Envelhecimento/fisiologia , Envelhecimento/psicologia , Eletroencefalografia/métodos , Imaginação/fisiologia , Movimento/fisiologia , Imagem Multimodal/métodos , Neurorretroalimentação/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto , Idoso , Interfaces Cérebro-Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurorretroalimentação/métodos , Reabilitação do Acidente Vascular Cerebral/métodos , Adulto Jovem
9.
PLoS One ; 6(10): e26386, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22022611

RESUMO

Inhibitory motor control is a core function of cognitive control. Evidence from diverse experimental approaches has linked this function to a mostly right-lateralized network of cortical and subcortical areas, wherein a signal from the frontal cortex to the basal ganglia is believed to trigger motor-response cancellation. Recently, however, it has been recognized that in the context of typical motor-control paradigms those processes related to actual response inhibition and those related to the attentional processing of the relevant stimuli are highly interrelated and thus difficult to distinguish. Here, we used fMRI and a modified Stop-signal task to specifically examine the role of perceptual and attentional processes triggered by the different stimuli in such tasks, thus seeking to further distinguish other cognitive processes that may precede or otherwise accompany the implementation of response inhibition. In order to establish which brain areas respond to sensory stimulation differences by rare Stop-stimuli, as well as to the associated attentional capture that these may trigger irrespective of their task-relevance, we compared brain activity evoked by Stop-trials to that evoked by Go-trials in task blocks where Stop-stimuli were to be ignored. In addition, region-of-interest analyses comparing the responses to these task-irrelevant Stop-trials, with those to typical relevant Stop-trials, identified separable activity profiles as a function of the task-relevance of the Stop-signal. While occipital areas were mostly blind to the task-relevance of Stop-stimuli, activity in temporo-parietal areas dissociated between task-irrelevant and task-relevant ones. Activity profiles in frontal areas, in turn, were activated mainly by task-relevant Stop-trials, presumably reflecting a combination of triggered top-down attentional influences and inhibitory motor-control processes.


Assuntos
Atenção/fisiologia , Rede Nervosa/fisiologia , Análise e Desempenho de Tarefas , Comportamento/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Física , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA