Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Med ; 23: 196-203, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28805231

RESUMO

Histone modifications play a critical role in the pathological processes of dilated cardiomyopathy (DCM). While the role and expression pattern of histone methyltransferases (HMTs), especially mixed lineage leukemia (MLL) families on DCM are unclear. To this end, twelve normal and fifteen DCM heart samples were included in the present study. A murine cardiac remodelling model was induced by transverse aortic constriction (TAC). Real-time PCR was performed to detect the expression levels of MLL families in the mouse and human left ventricles. The mRNA level of MLL3 was significantly increased in the mouse hearts treated by TAC surgery. Compared with normal hearts, higher mRNA and protein level of MLL3 was detected in the DCM hearts, and its expression level was closely associated with left ventricular end systolic diameter (LVEDD) and left ventricular ejection fraction (LVEF). However, the expression level of other MLL families (MLL, MLL2, MLL4, MLL5, SETD1A, and SETD1B) had no obvious change between control and DCM hearts or remodeled mouse hearts. Furthermore, the di-methylated histone H3 lysine 4 (H3K4me2) but not H3K4me3 was significantly increased in the DCM hearts. The protein levels of Smad3, GATA4, EGR1, which might regulate by MLL3, were remarkably elevated in the DCM hearts. Our hitherto unrecognized findings indicate that MLL3 has a potential role on pathological processes of DCM via regulating H3K4me2 and the expression of Smad3, GATA4, and EGR1.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Proteínas de Ligação a DNA/metabolismo , Adulto , Animais , Cardiomiopatia Dilatada/fisiopatologia , Proteínas de Ligação a DNA/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Fator de Transcrição GATA4/metabolismo , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Histonas/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteína de Leucina Linfoide-Mieloide/genética , RNA Mensageiro/metabolismo , Proteína Smad3/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA