Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 55(9): 1732-1746.e5, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35961317

RESUMO

Many immunocompromised patients mount suboptimal humoral immunity after SARS-CoV-2 mRNA vaccination. Here, we assessed the single-cell profile of SARS-CoV-2-specific T cells post-mRNA vaccination in healthy individuals and patients with various forms of immunodeficiencies. Impaired vaccine-induced cell-mediated immunity was observed in many immunocompromised patients, particularly in solid-organ transplant and chronic lymphocytic leukemia patients. Notably, individuals with an inherited lack of mature B cells, i.e., X-linked agammaglobulinemia (XLA) displayed highly functional spike-specific T cell responses. Single-cell RNA-sequencing further revealed that mRNA vaccination induced a broad functional spectrum of spike-specific CD4+ and CD8+ T cells in healthy individuals and patients with XLA. These responses were founded on polyclonal repertoires of CD4+ T cells and robust expansions of oligoclonal effector-memory CD45RA+ CD8+ T cells with stem-like characteristics. Collectively, our data provide the functional continuum of SARS-CoV-2-specific T cell responses post-mRNA vaccination, highlighting that cell-mediated immunity is of variable functional quality across immunodeficiency syndromes.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Humanos , Imunidade Humoral , RNA Mensageiro/genética , Síndrome , Vacinação , Proteínas do Envelope Viral
2.
J Infect Dis ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421006

RESUMO

BACKGROUND: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to severe disease with increased morbidity and mortality among certain risk groups. The presence of autoantibodies against type I interferons (aIFN-Abs) is one mechanism that contributes to severe coronavirus disease 2019 (COVID-19). METHODS: This study aimed to investigate the presence of aIFN-Abs in relation to the soluble proteome, circulating immune cell numbers, and cellular phenotypes, as well as development of adaptive immunity. RESULTS: aIFN-Abs were more prevalent in critical compared to severe COVID-19 but largely absent in the other viral and bacterial infections studied here. The antibody and T-cell response to SARS-CoV-2 remained largely unaffected by the presence aIFN-Abs. Similarly, the inflammatory response in COVID-19 was comparable in individuals with and without aIFN-Abs. Instead, presence of aIFN-Abs had an impact on cellular immune system composition and skewing of cellular immune pathways. CONCLUSIONS: Our data suggest that aIFN-Abs do not significantly influence development of adaptive immunity but covary with alterations in immune cell numbers.

3.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33479167

RESUMO

Dendritic cells (DCs) and monocytes are crucial mediators of innate and adaptive immune responses during viral infection, but misdirected responses by these cells may contribute to immunopathology. Here, we performed high-dimensional flow cytometry-analysis focusing on mononuclear phagocyte (MNP) lineages in SARS-CoV-2-infected patients with moderate and severe COVID-19. We provide a deep and comprehensive map of the MNP landscape in COVID-19. A redistribution of monocyte subsets toward intermediate monocytes and a general decrease in circulating DCs was observed in response to infection. Severe disease coincided with the appearance of monocytic myeloid-derived suppressor cell-like cells and a higher frequency of pre-DC2. Furthermore, phenotypic alterations in MNPs, and their late precursors, were cell-lineage-specific and associated either with the general response against SARS-CoV-2 or COVID-19 severity. This included an interferon-imprint in DC1s observed in all patients and a decreased expression of the coinhibitory molecule CD200R in pre-DCs, DC2s, and DC3 subsets of severely sick patients. Finally, unsupervised analysis revealed that the MNP profile, alone, pointed to a cluster of COVID-19 nonsurvivors. This study provides a reference for the MNP response to SARS-CoV-2 infection and unravels mononuclear phagocyte dysregulations associated with severe COVID-19.


Assuntos
COVID-19/imunologia , Sistema Fagocitário Mononuclear/imunologia , SARS-CoV-2/imunologia , Adulto , COVID-19/epidemiologia , COVID-19/metabolismo , COVID-19/virologia , Citocinas/imunologia , Células Dendríticas/imunologia , Feminino , Humanos , Interferons/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Sistema Fagocitário Mononuclear/metabolismo , Índice de Gravidade de Doença , Suécia
4.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34548411

RESUMO

Since the outset of the COVID-19 pandemic, increasing evidence suggests that the innate immune responses play an important role in the disease development. A dysregulated inflammatory state has been proposed as a key driver of clinical complications in COVID-19, with a potential detrimental role of granulocytes. However, a comprehensive phenotypic description of circulating granulocytes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients is lacking. In this study, we used high-dimensional flow cytometry for granulocyte immunophenotyping in peripheral blood collected from COVID-19 patients during acute and convalescent phases. Severe COVID-19 was associated with increased levels of both mature and immature neutrophils, and decreased counts of eosinophils and basophils. Distinct immunotypes were evident in COVID-19 patients, with altered expression of several receptors involved in activation, adhesion, and migration of granulocytes (e.g., CD62L, CD11a/b, CD69, CD63, CXCR4). Paired sampling revealed recovery and phenotypic restoration of the granulocytic signature in the convalescent phase. The identified granulocyte immunotypes correlated with distinct sets of soluble inflammatory markers, supporting pathophysiologic relevance. Furthermore, clinical features, including multiorgan dysfunction and respiratory function, could be predicted using combined laboratory measurements and immunophenotyping. This study provides a comprehensive granulocyte characterization in COVID-19 and reveals specific immunotypes with potential predictive value for key clinical features associated with COVID-19.


Assuntos
COVID-19/imunologia , Granulócitos/imunologia , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/fisiopatologia , Granulócitos/citologia , Humanos , Imunidade Inata , Imunofenotipagem , Contagem de Leucócitos , Pulmão/fisiopatologia , Modelos Biológicos , Escores de Disfunção Orgânica , SARS-CoV-2 , Índice de Gravidade de Doença
5.
J Clin Immunol ; 43(6): 1075-1082, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37058198

RESUMO

PURPOSE: Patients with antibody deficiencies often receive maintenance treatment with donor plasma-derived immunoglobulin (Ig) preparations to decrease the incidence and severity of infections. We have previously shown that IgG antibodies to the original SARS-CoV-2 strain were not consistently present in off-the-shelf Ig batches produced up to approximately 18 months after the first identified case of COVID-19 in the USA and that Ig batches with anti-SARS-CoV-2 IgG primarily contained vaccine-induced spike specific antibodies. This study aimed to investigate the degree of cross-reactivity between vaccine-induced anti-SARS-CoV-2 antibodies against Wuhan strain and subsequent viral variants. METHODS: Samples were collected from 74 Ig batches supplied by three different commercial manufacturers. All batches were used at the Immunodeficiency Unit at the Karolinska University Hospital from the start of the SARS-CoV-2 pandemic until September 2022. Antibody quantity and potential to neutralize virus entry into host cells were assessed against the original SARS-CoV-2 Wuhan strain and the following nine variants: Alpha, Beta, Delta, IHU, and the Omicron BA.1, BA.1.1, BA.1 with spike mutation L452R, BA.2, and BA.3. RESULTS: Ig batches produced approximately 18 months after the SARS-CoV-2 outbreak (from around July 2021) and later consistently contained high quantities of antibodies that bind the Wuhan strain. The Ig batches had overall low reactivity to the SARS-CoV-2 nucleocapsid, which implies that plasma donor spike IgG essentially is the result of vaccination. We assessed the degree of cross-reactivity towards each virus variant by plotting the variant/Wuhan strain ratio, which was consistent regardless of production date, suggesting cross-reactivity with vaccine-induced antibodies rather than virus exposure in the plasma donor population. Viral variants that emerged later during the pandemic systematically had a lower reactivity ratio, except for the Delta and IHU variants. The Ig batches displayed markedly low neutralizing potential towards the Beta variant and all tested Omicron variants. CONCLUSION: Commercial Ig batches currently contain large quantities of SARS-CoV-2 vaccine-induced antibodies. Cross-reactivity with variant strains is evident but varies, with markedly low neutralizing potential observed against Omicron variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , Anticorpos Antivirais , Imunoglobulina G , Anticorpos Neutralizantes
6.
Eur J Immunol ; 52(3): 503-510, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34837225

RESUMO

Corona disease 2019 (COVID-19) affects multiple organ systems. Recent studies have indicated perturbations in the circulating metabolome linked to COVID-19 severity. However, several questions pertain with respect to the metabolome in COVID-19. We performed an in-depth assessment of 1129 unique metabolites in 27 hospitalized COVID-19 patients and integrated results with large-scale proteomic and immunology data to capture multiorgan system perturbations. More than half of the detected metabolic alterations in COVID-19 were driven by patient-specific confounding factors ranging from comorbidities to xenobiotic substances. Systematically adjusting for this, a COVID-19-specific metabolic imprint was defined which, over time, underwent a switch in response to severe acute respiratory syndrome coronavirus-2 seroconversion. Integration of the COVID-19 metabolome with clinical, cellular, molecular, and immunological severity scales further revealed a network of metabolic trajectories aligned with multiple pathways for immune activation, and organ damage including neurological inflammation and damage. Altogether, this resource refines our understanding of the multiorgan system perturbations in severe COVID-19 patients.


Assuntos
COVID-19/imunologia , COVID-19/metabolismo , Metaboloma/imunologia , SARS-CoV-2 , Adolescente , Adulto , Idoso , COVID-19/complicações , Estudos de Casos e Controles , Doenças do Sistema Nervoso Central/etiologia , Doenças do Sistema Nervoso Central/imunologia , Doenças do Sistema Nervoso Central/metabolismo , Estudos de Coortes , Feminino , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade , Especificidade de Órgãos , Pandemias , Fenótipo , Proteômica , Índice de Gravidade de Doença , Adulto Jovem
7.
Respir Res ; 24(1): 62, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829233

RESUMO

BACKGROUND: COVID-19 remains a major public health challenge, requiring the development of tools to improve diagnosis and inform therapeutic decisions. As dysregulated inflammation and coagulation responses have been implicated in the pathophysiology of COVID-19 and sepsis, we studied their plasma proteome profiles to delineate similarities from specific features. METHODS: We measured 276 plasma proteins involved in Inflammation, organ damage, immune response and coagulation in healthy controls, COVID-19 patients during acute and convalescence phase, and sepsis patients; the latter included (i) community-acquired pneumonia (CAP) caused by Influenza, (ii) bacterial CAP, (iii) non-pneumonia sepsis, and (iv) septic shock patients. RESULTS: We identified a core response to infection consisting of 42 proteins altered in both COVID-19 and sepsis, although higher levels of cytokine storm-associated proteins were evident in sepsis. Furthermore, microbiologic etiology and clinical endotypes were linked to unique signatures. Finally, through machine learning, we identified biomarkers, such as TRIM21, PTN and CASP8, that accurately differentiated COVID-19 from CAP-sepsis with higher accuracy than standard clinical markers. CONCLUSIONS: This study extends the understanding of host responses underlying sepsis and COVID-19, indicating varying disease mechanisms with unique signatures. These diagnostic and severity signatures are candidates for the development of personalized management of COVID-19 and sepsis.


Assuntos
COVID-19 , Infecções Comunitárias Adquiridas , Pneumonia , Sepse , Humanos , COVID-19/complicações , Proteômica , Inflamação/complicações , Biomarcadores
8.
Mol Med ; 28(1): 54, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562666

RESUMO

Mucosa-associated invariant T (MAIT) cells are unconventional T cells with innate-like capacity to rapidly respond to microbial infection via MR1-restricted antigen recognition. Emerging evidence indicate that they can also act as rapid sensors of viral infection via innate cytokine activation. However, their possible role in the immune response to mRNA vaccination is unknown. Here, we evaluated the involvement of MAIT cells in individuals vaccinated with the BNT162b2 mRNA SARS-CoV-2 vaccine. MAIT cell levels, phenotype and function in circulation were preserved and unperturbed through day 35 post-vaccination in healthy donor (HD) vaccinees, as well as people living with HIV (PLWH) or with primary immunodeficiency (PID). Unexpectedly, pre-vaccination and post-vaccination levels of MAIT cells correlated positively with the magnitude of the SARS-CoV-2 spike protein-specific CD4 T cell and antibody responses in the HD vaccinees. This pattern was largely preserved in the PID group, but less so in the PLWH group. Furthermore, in the HD vaccinees levels of MAIT cell activation and cytolytic potential correlated negatively to the adaptive antigen-specific immune responses. These findings indicate an unexpected association between MAIT cell compartment characteristics and the immune response magnitude to the BNT162b2 mRNA vaccine.


Assuntos
COVID-19 , Células T Invariantes Associadas à Mucosa , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunidade Humoral , RNA Mensageiro/genética , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas Sintéticas , Vacinas de mRNA
9.
Mol Med ; 28(1): 20, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135470

RESUMO

Adaptive immune responses have been studied extensively in the course of mRNA vaccination against COVID-19. Considerably fewer studies have assessed the effects on innate immune cells. Here, we characterized NK cells in healthy individuals and immunocompromised patients in the course of an anti-SARS-CoV-2 BNT162b2 mRNA prospective, open-label clinical vaccine trial. See trial registration description in notes. Results revealed preserved NK cell numbers, frequencies, subsets, phenotypes, and function as assessed through consecutive peripheral blood samplings at 0, 10, 21, and 35 days following vaccination. A positive correlation was observed between the frequency of NKG2C+ NK cells at baseline (Day 0) and anti-SARS-CoV-2 Ab titers following BNT162b2 mRNA vaccination at Day 35. The present results provide basic insights in regards to NK cells in the context of mRNA vaccination, and have relevance for future mRNA-based vaccinations against COVID-19, other viral infections, and cancer.Trial registration: The current study is based on clinical material from the COVAXID open-label, non-randomized prospective clinical trial registered at EudraCT and clinicaltrials.gov (no. 2021-000175-37). Description: https://clinicaltrials.gov/ct2/show/NCT04780659?term=2021-000175-37&draw=2&rank=1 .


Assuntos
Vacina BNT162/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Hospedeiro Imunocomprometido/imunologia , Células Matadoras Naturais/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Anticorpos Antivirais/imunologia , Vacina BNT162/administração & dosagem , COVID-19/epidemiologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Feminino , Citometria de Fluxo , Humanos , Células Matadoras Naturais/metabolismo , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Avaliação de Resultados em Cuidados de Saúde/métodos , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Pandemias/prevenção & controle , SARS-CoV-2/fisiologia , Vacinação/métodos , Vacinação/estatística & dados numéricos , Adulto Jovem
10.
J Clin Immunol ; 42(6): 1130-1136, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35538387

RESUMO

Immunodeficient individuals often rely on donor-derived immunoglobulin (Ig) replacement therapy (IGRT) to prevent infections. The passive immunity obtained by IGRT is limited and reflects the state of immunity in the plasma donor population at the time of donation. The objective of the current study was to describe how the potential of passive immunity to SARS-CoV-2 in commercial off-the-shelf Ig products used for IGRT has evolved during the pandemic. Samples were collected from all consecutive Ig batches (n = 60) from three Ig producers used at the Immunodeficiency Unit at Karolinska University Hospital from the start of the SARS-CoV-2 pandemic until January 2022. SARS-CoV-2 antibody concentrations and neutralizing capacity were assessed in all samples. In vivo relevance was assessed by sampling patients with XLA (n = 4), lacking endogenous immunoglobulin synthesis and on continuous Ig substitution, for plasma SARS-CoV-2 antibody concentration. SARS-CoV-2 antibody concentrations in commercial Ig products increased over time but remained inconsistently present. Moreover, Ig batches with high neutralizing capacity towards the Wuhan-strain of SARS-CoV-2 had 32-fold lower activity against the Omicron variant. Despite increasing SARS-CoV-2 antibody concentrations in commercial Ig products, four XLA patients on IGRT had relatively low plasma concentrations of SARS-CoV-2 antibodies with no potential to neutralize the Omicron variant in vitro. In line with this observation, three out the four XLA patients had symptomatic COVID-19 during the Omicron wave. In conclusion, 2 years into the pandemic the amounts of antibodies to SARS-CoV-2 vary considerably among commercial Ig batches obtained from three commercial producers. Importantly, in batches with high concentrations of antibodies directed against the original virus strain, protective passive immunity to the Omicron variant appears to be insufficient.


Assuntos
COVID-19 , SARS-CoV-2 , Agamaglobulinemia , Anticorpos Neutralizantes , Anticorpos Antivirais , Doenças Genéticas Ligadas ao Cromossomo X , Humanos
11.
Scand J Immunol ; : e13195, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35652743

RESUMO

The Karolinska KI/K COVID-19 Immune Atlas project was conceptualized in March 2020 as a part of the academic research response to the developing SARS-CoV-2 pandemic. The aim was to rapidly provide a curated dataset covering the acute immune response towards SARS-CoV-2 infection in humans, as it occurred during the first wave. The Immune Atlas was built as an open resource for broad research and educational purposes. It contains a presentation of the response evoked by different immune and inflammatory cells in defined naïve patient-groups as they presented with moderate and severe COVID-19 disease. The present Resource Article describes how the Karolinska KI/K COVID-19 Immune Atlas allow scientists, students, and other interested parties to freely explore the nature of the immune response towards human SARS-CoV-2 infection in an online setting.

12.
Cell Microbiol ; 21(12): e13099, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31414579

RESUMO

Several commensal and pathogenic Gram-negative bacteria produce DNA-damaging toxins that are considered bona fide carcinogenic agents. The microbiota of colorectal cancer (CRC) patients is enriched in genotoxin-producing bacteria, but their role in the pathogenesis of CRC is poorly understood. The adenomatous polyposis coli (APC) gene is mutated in familial adenomatous polyposis and in the majority of sporadic CRCs. We investigated whether the loss of APC alters the response of colonic epithelial cells to infection by Salmonella enterica, the only genotoxin-producing bacterium associated with cancer in humans. Using 2D and organotypic 3D cultures, we found that APC deficiency was associated with sustained activation of the DNA damage response, reduced capacity to repair different types of damage, including DNA breaks and oxidative damage, and failure to induce cell cycle arrest. The reduced DNA repair capacity and inability to activate adequate checkpoint responses was associated with increased genomic instability in APC-deficient cells exposed to the genotoxic bacterium. Inhibition of the checkpoint response was dependent on activation of the phosphatidylinositol 3-kinase pathway. These findings highlight the synergistic effect of the loss of APC and infection with genotoxin-producing bacteria in promoting a microenvironment conducive to malignant transformation.


Assuntos
Polipose Adenomatosa do Colo/genética , Colo/metabolismo , Células Epiteliais/metabolismo , Instabilidade Genômica/genética , Fosfatidilinositol 3-Quinases/metabolismo , Infecções por Salmonella/metabolismo , Salmonella enterica/metabolismo , Polipose Adenomatosa do Colo/microbiologia , Polipose Adenomatosa do Colo/patologia , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Colo/microbiologia , Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Dano ao DNA/genética , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Genes Supressores de Tumor/fisiologia , Humanos , Camundongos , Mutagênicos/metabolismo , Infecções por Salmonella/genética , Infecções por Salmonella/microbiologia , Infecções por Salmonella/patologia , Transdução de Sinais/genética , Microambiente Tumoral/genética
13.
Artigo em Inglês | MEDLINE | ID: mdl-29808337

RESUMO

Biomedical research aiming to understand the molecular basis of human lung tissue development, homeostasis and disease, or to develop new therapies for human respiratory diseases, requires models that faithfully recapitulate the human condition. This has stimulated biologists and engineers to develop in vitro organotypic models mimicking human respiratory tissues. In this chapter, we provide examples of different types of model systems ranging from simple unicellular cultures to more complex multicellular systems. The models contain, in varying degree, cell types present in real tissue in combination with different extracellular matrix components that can critically affect cell phenotype and function. We also describe how organotypic respiratory models can be combined with human innate immune cells, to better recapitulate tissue inflammation, a key component in, for example, infectious diseases. These models have the potential to provide new insights into lung physiology, tissue infection and inflammation, disease mechanisms, as well as provide a platform for identification of novel targets and screening of candidate drugs in human lung disorders.

15.
Adv Exp Med Biol ; 1060: 131-146, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30155626

RESUMO

To study human immunology in general and stromal immunology in particular, it is highly motivated to move from monolayers to 3D cultures, such as organotypic models, that better mimic the function of living tissue. These models can potentially contain most if not all cell types present in tissues, in combination with different extracellular matrix components that can critically affect cell phenotype. Besides their well-established use in studies of tissue-specific cells, such as epithelial cells, endothelial cells and stromal fibroblasts in combination with extracellular components, these models have also been shown to be valuable to study how tissue participates in the regulation of leukocyte differentiation and function. Organotypic models with leukocytes represent novel powerful tools to study human stromal immunology and mechanisms involved in the regulation of leukocyte functions and inflammatory processes in human health and disease. In particular, these models are robust, long-lived and reproducible and allow monitoring of disease progression in real time, as well as the mixing of cellular constituents from healthy and pathological tissues. These models are also easy to manipulate, either genetically or by adding external stimulants, such as cytokines and pathogens, to mimic pathological conditions. It is thus not surprising that these models are proposed to be useful in toxicology screening assays, evaluating therapeutic efficacy of drugs and antibiotics, as well as in personalized medicine. Within this chapter, the most recent developments in creating organotypic models for the purpose of study of human leukocyte and stromal cell interactions, in health and disease, will be discussed, in particular focusing on live imaging. Special emphasis will be given on an organotypic model resembling human lung and its usefulness in studying the fine control of physiological and pathological processes in human health and disease. Using these models in studies on human stromal cell and leukocyte interactions will likely help identifying novel disease traits and may point out new potential targets to monitor and treat human diseases.


Assuntos
Comunicação Celular , Doença , Saúde , Leucócitos/citologia , Modelos Moleculares , Animais , Humanos , Células Estromais/citologia , Células Estromais/patologia
16.
J Allergy Clin Immunol ; 139(4): 1321-1330.e4, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27670241

RESUMO

BACKGROUND: In contrast to the extensive knowledge about human natural killer (NK) cells in peripheral blood, relatively little is known about NK cells in the human lung. Knowledge about the composition, differentiation, and function of human lung NK cells is critical to better understand their role in diseases affecting the lung, including asthma, chronic obstructive pulmonary disease, infections, and cancer. OBJECTIVE: We sought to analyze and compare the phenotypic and functional characteristics of NK cells in the human lung and peripheral blood at the single-cell level. METHODS: NK cells in human lung tissue and matched peripheral blood from 132 subjects were analyzed by using 16-color flow cytometry and confocal microscopy. RESULTS: CD56dimCD16+ NK cells made up the vast majority of NK cells in human lungs, had a more differentiated phenotype, and more frequently expressed educating killer cell immunoglobulin-like receptors compared with NK cells in peripheral blood. Despite this, human lung NK cells were hyporesponsive toward target cell stimulation, even after priming with IFN-α. Furthermore, we detected a small subset of NK cells expressing CD69, a marker of tissue residency. These CD69+ NK cells in the lung consisted predominantly of immature CD56brightCD16- NK cells and less differentiated CD56dimCD16+ NK cells. CONCLUSION: Here, we characterize the major NK cell populations in the human lung. Our data suggest a model in which the majority of NK cells in the human lung dynamically move between blood and the lung rather than residing in the lung as bona fide tissue-resident CD69+ NK cells.


Assuntos
Células Matadoras Naturais/citologia , Pulmão/citologia , Pulmão/imunologia , Subpopulações de Linfócitos/citologia , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Antígeno CD56/imunologia , Diferenciação Celular/imunologia , Citometria de Fluxo , Humanos , Células Matadoras Naturais/imunologia , Lectinas Tipo C/imunologia , Subpopulações de Linfócitos/imunologia , Microscopia Confocal
18.
Gut ; 65(10): 1632-41, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26160381

RESUMO

OBJECTIVE: In IBD, interleukin-23 (IL-23) and its receptor (IL-23R) are implicated in disease initiation and progression. Novel insight into which cells produce IL-23 at the site of inflammation at an early stage of IBD will promote the development of new tools for diagnosis, treatment and patient monitoring. We examined the cellular source of IL-23 in colon tissue of untreated newly diagnosed paediatric patients with IBD. DESIGN: Colon tissues from IBD and non-IBD patients were analysed by quantitative real-time PCR (qPCR), immunofluorescence confocal microscopy and flow cytometry after appropriate sample preparation. Blood samples from IBD and non-IBD patients and healthy controls were analysed using flow cytometry and qPCR. RESULTS: We discovered that tissue-infiltrating neutrophils were the main source of IL-23 in the colon of paediatric patients with IBD, while IL-23(+) human leucocyte antigen-DR(+) or IL-23(+)CD14(+) cells were scarce or non-detectable, respectively. The colonic IL-23(+) neutrophils expressed C-X-C motif (CXC)R1 and CXCR2, receptors for the CXC ligand 8 (CXCL8) chemokine family, and a corresponding CXCR1(+)CXCR2(+)IL-23(+)subpopulation of neutrophils was also identified in the blood of both patients with IBD and healthy individuals. However, CXCL8-family chemokines were only elevated in colon tissue from patients with IBD. CONCLUSIONS: This study provides the first evidence of CXCR1(+)CXCR2(+)IL-23-producing neutrophils that infiltrate and accumulate in inflamed colon tissue of patients with IBD. Thus, this novel source of IL-23 may play a key role in disease progression and will be important to take into consideration in the development of future strategies to monitor, treat and prevent IBD.


Assuntos
Doenças Inflamatórias Intestinais , Interleucina-23/metabolismo , Interleucina-8/metabolismo , Infiltração de Neutrófilos/imunologia , Receptores de Interleucina/metabolismo , Adolescente , Criança , Pré-Escolar , Colo/imunologia , Colo/patologia , Progressão da Doença , Feminino , Humanos , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Masculino , Gravidade do Paciente
19.
Cell Host Microbe ; 32(2): 156-161.e3, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38211584

RESUMO

T cells are critical in mediating the early control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) breakthrough infection. However, it remains unknown whether memory T cells can effectively cross-recognize new SARS-CoV-2 variants with a broad array of mutations, such as the emergent hypermutated BA.2.86 variant. Here, we report in two separate cohorts, including healthy controls and individuals with chronic lymphocytic leukemia, that SARS-CoV-2 spike-specific CD4+ and CD8+ T cells induced by prior infection or vaccination demonstrate resilient immune recognition of BA.2.86. In both cohorts, we found largely preserved SARS-CoV-2 spike-specific CD4+ and CD8+ T cell magnitudes against mutated spike epitopes of BA.2.86. Functional analysis confirmed that both cytokine expression and proliferative capacity of SARS-CoV-2 spike-specific T cells to BA.2.86-mutated spike epitopes are similarly sustained. In summary, our findings indicate that memory CD4+ and CD8+ T cells continue to provide cell-mediated immune recognition to highly mutated emerging variants such as BA.2.86.


Assuntos
COVID-19 , Células T de Memória , Humanos , Linfócitos T CD8-Positivos , SARS-CoV-2/genética , Epitopos , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais
20.
NPJ Biofilms Microbiomes ; 9(1): 104, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123600

RESUMO

Although mRNA SARS-CoV-2 vaccines are generally safe and effective, in certain immunocompromised individuals they can elicit poor immunogenic responses. Among these individuals, people living with HIV (PLWH) have poor immunogenicity to several oral and parenteral vaccines. As the gut microbiome is known to affect vaccine immunogenicity, we investigated whether baseline gut microbiota predicts immune responses to the BNT162b2 mRNA SARS-CoV-2 vaccine in healthy controls and PLWH after two doses of BNT162b2. Individuals with high spike IgG titers and high spike-specific CD4+ T-cell responses against SARS-CoV-2 showed low α-diversity in the gut. Here, we investigated and presented initial evidence that the gut microbial composition influences the response to BNT162b2 in PLWH. From our predictive models, Bifidobacterium and Faecalibacterium appeared to be microbial markers of individuals with higher spike IgG titers, while Cloacibacillus was associated with low spike IgG titers. We therefore propose that microbiome modulation could optimize immunogenicity of SARS-CoV-2 mRNA vaccines.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Infecções por HIV , Humanos , Vacinas contra COVID-19 , Vacina BNT162 , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , RNA Mensageiro , Imunoglobulina G
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA