Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257324

RESUMO

Despite advancements in analytical technologies, the complex nature of cosmetic matrices, coupled with the presence of diverse and trace unauthorized additives, hinders the application of these technologies in cosmetics analysis. This not only impedes effective regulation of cosmetics but also leads to the continual infiltration of illegal products into the market, posing serious health risks to consumers. The establishment of cosmetic regulations is often based on extensive scientific experiments, resulting in a certain degree of latency. Therefore, timely advancement in laboratory research is crucial to ensure the timely update and adaptability of regulations. A comprehensive understanding of the composition of cosmetic matrices and their pretreatment technologies is vital for enhancing the efficiency and accuracy of cosmetic detection. Drawing upon the China National Medical Products Administration's 2021 Cosmetic Classification Rules and Classification Catalogue, we streamline the wide array of cosmetics into four principal categories based on the following compositions: emulsified, liquid, powdered, and wax-based cosmetics. In this review, the characteristics, compositional elements, and physicochemical properties inherent to each category, as well as an extensive overview of the evolution of pretreatment methods for different categories, will be explored. Our objective is to provide a clear and comprehensive guide, equipping researchers with profound insights into the core compositions and pretreatment methods of cosmetics, which will in turn advance cosmetic analysis and improve detection and regulatory approaches in the industry.


Assuntos
Cosméticos , China , Indústrias , Pós , Tecnologia
2.
Anesth Analg ; 137(2): 399-408, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267129

RESUMO

BACKGROUND: The effectiveness and safety of opioid-free anesthesia (OFA) regimens in distinct types of surgeries remain controversial. In this study, we investigated whether OFA could reduce the occurrence of chronic postoperative pain in patients receiving video-assisted thoracoscopic surgery (VATS). METHODS: We conducted a 2-center, randomized, controlled trial from September 2021 to January 2022. A total of 162 lung tumor patients scheduled to undergo VATS were randomly divided into an opioid-based anesthesia (OA) group and an OFA group. The OA group received general anesthesia combined with thoracic epidural block using morphine, while the OFA group received general anesthesia combined with thoracic epidural block using esketamine. Patient-controlled epidural analgesia (PCEA) was used after surgery (ropivacaine and morphine for the OA group versus ropivacaine and esketamine for the OFA group). The primary end point was chronic pain rates at 3 months after VATS, which were analyzed using a logistic regression model. The secondary end points were chronic pain rates at 6 months, acute pain rates at 24 hours and 48 hours postoperatively, postoperative side effects, and perioperative variables. RESULTS: The final analysis included 159 patients. Acute postoperative pain at 24 hours occurred in 0 of the 79 (0%) patients in the OA group and 10 of the 80 (17.5%) patients in the OFA group (odds ratio, 52.14; 95% confidence interval [CI], 6.47-420.10; P < .001). Acute postoperative pain at 48 hours occurred in 3 of the 79 (3.8%) patients in the OA group and 2 of the 80 (2.5%) patients in the OFA group (odds ratio, 2.07; 95% CI, 0.99-4.32; P = .053). In this study, none of the patients had moderate or severe pain in either group at 3 and 6 months postsurgically. Mild chronic postoperative pain at 3 months occurred in 27 of the 79 (34.2%) patients in the OA group and 14 of the 80 (17.5%) patients in the OFA group (odds ratio, 3.52; 95% CI, 1.49-8.31; P = .004). At 6 months, mild chronic pain still occurred in 23 of the 79 (29.1%) patients in the OA group and 9 of the 80 (11.3%) patients in the OFA group (odds ratio, 5.55; 95% CI, 2.01-15.33; P = .001). In addition, the OFA group included fewer patients with side effects, including nausea, vomiting, and pruritus, within 48 hours after surgery. CONCLUSIONS: Replacement of opioids by esketamine, intraoperatively as intravenous injection and epidural infusion and postoperatively as epidural infusion, reduces the incidence of mild chronic postoperative pain and side effects in patients after VATS.


Assuntos
Analgesia Epidural , Anestesia Epidural , Dor Crônica , Humanos , Analgésicos Opioides/efeitos adversos , Ropivacaina/uso terapêutico , Anestésicos Locais/efeitos adversos , Dor Crônica/tratamento farmacológico , Dor Pós-Operatória/diagnóstico , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/prevenção & controle , Morfina/efeitos adversos , Anestesia Epidural/efeitos adversos , Analgesia Epidural/efeitos adversos , Cirurgia Torácica Vídeoassistida/efeitos adversos
3.
Cell Biol Toxicol ; 38(6): 945-961, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35040016

RESUMO

Covalent binding of reactive metabolites formed by drug metabolic activation with biological macromolecules is considered to be an important mechanism of drug metabolic toxicity. Recent studies indicate that the endoplasmic reticulum (ER) could play an important role in drug toxicity by participating in the metabolic activation of drugs and could be a primarily attacked target by reactive metabolites. In this article, we summarize the generation and mechanism of reactive metabolites in ER stress and their associated cell death and inflammatory cascade, as well as the systematic modulation of unfolded protein response (UPR)-mediated adaptive pathways.


Assuntos
Apoptose , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Resposta a Proteínas não Dobradas , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo
4.
Surg Endosc ; 36(12): 9113-9122, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35773604

RESUMO

BACKGROUND: The purpose of this randomized controlled trial was to determine if enhanced recovery after surgery (ERAS) would improve outcomes for three-stage minimally invasive esophagectomy (MIE). METHODS: Patients with esophageal cancer undergoing MIE between March 2016 and August 2018 were consecutively enrolled, and were randomly divided into 2 groups: ERAS+group that received a guideline-based ERAS protocol, and ERAS- group that received standard care. The primary endpoint was morbidity after MIE. The secondary endpoints were the length of stay (LOS) and time to ambulation after the surgery. The perioperative results including the Surgical Apgar Score (SAS) and Visualized Analgesia Score (VAS) were also collected and compared. RESULTS: A total of 60 patients in the ERAS+ group and 58 patients in the ERAS- group were included. Postoperatively, lower morbidity and pulmonary complication rate were recorded in the ERAS+ group (33.3% vs. 51.7%; p = 0.04, 16.7% vs. 32.8%; p = 0.04), while the incidence of anastomotic leakage remained comparable (11.7% vs. 15.5%; p = 0.54). There was an earlier ambulation (3 [2-3] days vs. 3 [3-4] days, p = 0.001), but comparable LOS (10 [9-11.25] days vs. 10 [9-13] days; p = 0.165) recorded in ERAS+ group. The ERAS protocol led to close scores in both SAS (7.80 ± 1.03 vs. 8.07 ± 0.89, p = 0.21) and VAS (1.74 ± 0.85 vs. 1.78 ± 1.06, p = 0.84). CONCLUSIONS: Implementation of an ERAS protocol for patients undergoing MIE resulted in earlier ambulation and lower pulmonary complications, without a change in anastomotic leakage or length of hospital stay. Further studies on minimizing leakage should be addressed in ERAS for MIE.


Assuntos
Neoplasias Esofágicas , Esofagectomia , Humanos , Esofagectomia/métodos , Fístula Anastomótica/cirurgia , Resultado do Tratamento , Neoplasias Esofágicas/cirurgia , Neoplasias Esofágicas/complicações , Tempo de Internação , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/cirurgia , Procedimentos Cirúrgicos Minimamente Invasivos/métodos
5.
Pharmacol Res ; 165: 105371, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33460792

RESUMO

Drug-induced nephrotoxicity is a frequent adverse event that contributes to acute kidney injury with tubular and/or glomerular lesions. Methotrexate (MTX) is a folate analog used against a myriad of malignancies and autoimmune diseases. Unfortunately, ambiguous renal toxicology limits its safe clinical usage. Based on our previous studies, 7-OH MTX as an overlooked oxidative metabolite of MTX was proposed to be the main culprit responsible for nephrotoxicity, while nobiletin, a naturally occurring polymethoxylated flavonoid screened from our prepared total phenolic extracts of Citrus aurantium L. (TPE-CA), was employed as a therapeutic agent for drug-drug interactions. According to the present study, nobiletin can ameliorate the renal accumulation of 7-OH MTX through the interaction with aldehyde oxidase. RNA-seq analysis revealed that 7-OH MTX was mainly related to protein processing in endoplasmic reticulum (ER) stress, with the PERK/CHOP pathway selected as the most significant for metabolic nephrotoxicity. Meanwhile, the cross-linked proteins and conducted signals were investigated by western blotting and further verified by GSK inhibition analyses. These results indicated that nobiletin protected renal function from MTX-induced nephrotoxicity by modulating metabolism and ameliorated the metabolic toxicity of 7-OH MTX on ER stress-induced PERK/CHOP conduction by maintaining Ca2+ homeostasis and reducing the production of reactive oxygen species.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Metotrexato/análogos & derivados , Metotrexato/toxicidade , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , eIF-2 Quinase/metabolismo , Injúria Renal Aguda/patologia , Animais , Cálcio/metabolismo , Interações Medicamentosas , Flavonas , Citometria de Fluxo , Imunofluorescência , Masculino , Metotrexato/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
6.
Zhongguo Zhong Yao Za Zhi ; 46(12): 3165-3170, 2021 Jun.
Artigo em Zh | MEDLINE | ID: mdl-34467709

RESUMO

Nucleic acid aptamers, broad-spectrum target-specific single-stranded oligonucleotides, serve as molecules in targeted therapy, targeted delivery and disease diagnosis for the treatment of tumor or microbial infection and clinical detection. Due to the existence of components in the use of traditional Chinese medicine(TCM), the target is difficult to concentrate and the specificity of treatment is poor. The effective components of TCM are toxic components, so a highly sensitive detection method is urgently needed to reduce the toxicity problem at the same time. The combined application of TCM and modern medical treatment strategy are difficult and cannot improve the therapeutic effect. Aptamers, advantageous in biosensors, aptamer-nanoparticles for targeted drug delivery, and aptamer-siRNA chimeras, are expected to connect Chinese medicinals with nanotechnology, diagnostic technology and combined therapies. We summarized the preparation, screening, and modification techniques of nucleic acid aptamers and the biomedical applications and advantages in therapy, targeting, and diagnosis, aiming at providing a reference for the in-depth research and development in TCM.


Assuntos
Aptâmeros de Nucleotídeos , Ácidos Nucleicos , Sistemas de Liberação de Medicamentos , Medicina Tradicional Chinesa , RNA Interferente Pequeno
8.
Mediators Inflamm ; 2015: 412319, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25705092

RESUMO

Extracorporeal circulation (ECC) is necessary for conventional cardiac surgery and life support, but it often triggers systemic inflammation that can significantly damage tissue. Studies of ECC have been limited to large animals because of the complexity of the surgical procedures involved, which has hampered detailed understanding of ECC-induced injury. Here we describe a minimally invasive mouse model of ECC that may allow more extensive mechanistic studies. The right carotid artery and external jugular vein of anesthetized adult male C57BL/6 mice were cannulated to allow blood flow through a 1/32-inch external tube. All animals (n = 20) survived 30 min ECC and subsequent 60 min observation. Blood analysis after ECC showed significant increases in levels of tumor necrosis factor α, interleukin-6, and neutrophil elastase in plasma, lung, and renal tissues, as well as increases in plasma creatinine and cystatin C and decreases in the oxygenation index. Histopathology showed that ECC induced the expected lung inflammation, which included alveolar congestion, hemorrhage, neutrophil infiltration, and alveolar wall thickening; in renal tissue, ECC induced intracytoplasmic vacuolization, acute tubular necrosis, and epithelial swelling. Our results suggest that this novel, minimally invasive mouse model can recapitulate many of the clinical features of ECC-induced systemic inflammatory response and organ injury.


Assuntos
Circulação Extracorpórea , Animais , Creatinina/sangue , Cistatina C/sangue , Interleucina-6/metabolismo , Elastase de Leucócito/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Pneumonia/sangue , Pneumonia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
ACS Omega ; 9(25): 27321-27328, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38947815

RESUMO

Tripterygium glycoside tablets (TGTs) are preparations extracted and purified from Tripterygium wilfordii Hook. F and are extensively utilized in the treatment of autoimmune diseases, such as rheumatoid arthritis (RA). However, variations in production processes among manufacturers can lead to challenges in quality control and clinical utilization of TGTs. A band-selective 2D 1H-13C HSQC quantification method was applied for the determination of 13 active ingredients in TGTs. This method was validated following the guidelines of USP-NF 2022. The results demonstrated that the quantitative method exhibited excellent signal resolution, as well as sufficient accuracy, sensitivity, and stability. In addition, the 1H NMR spectra of TGTs from three manufacturers underwent analysis using principal component analysis and orthogonal partial least-squares discriminant analysis. The results revealed significant differences among the TGTs from the three manufacturers, with manufacturer 2 and manufacturer 3 demonstrating superior product consistency compared to manufacturer 1. A quality evaluation system for TGTs was developed based on band-selective 2D 1H-13C HSQC and 1H NMR, encompassing both quality markers and fingerprinting. This system offers reliable approaches and insights for enhancing the quality control of natural products.

10.
Anal Chim Acta ; 1274: 341568, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37455080

RESUMO

Sesquiterpene pyridine alkaloids (SPAs) are bioactive analogues derived from the genus Tripterygium and have anti-inflammatory and anti-rheumatic properties. Attributed to the similar sesquiterpene structures, the total SPAs showed severe peak overlap in 1D NMR and HPLC, leading to difficulties in identification and quantification. Interestingly, the application of band-selective HSQC NMR that specifically excited the region corresponding to the H-3 of SPAs prompted a signal separation of the total SPAs. Based on the high resolution, 23 SPAs were identified from the band-selective HSQC spectrum. The coupling constants (JCH, JHH) and relaxation times (T1, T2) of SPAs were measured, and it was found that they caused less than 1% attenuation of the HSQC signals, so the HSQC signals of SPAs had almost uniform responses. The concentrations of 23 SPAs were determined by standard curve method, using wilforgine as the calibration. In addition, we extended the pulse length-based concentration determination (PULCON) as a more efficient external standard method to the band-selective HSQC spectrum, and the results showed that the concentrations of alkaloids determined by PULCON were consistent with those measured by standard curve method. The developed quantification approach was validated according to the <761> of United States Pharmacopoeia (USP), demonstrating that the established band-selective HSQC approach is reliable for the rapid quantification of analogues in botanical extracts.


Assuntos
Alcaloides , Sesquiterpenos , Tripterygium/química , Alcaloides/química , Espectroscopia de Ressonância Magnética , Sesquiterpenos/química , Piridinas/química
11.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 43(5): 770-4, 2012 Sep.
Artigo em Zh | MEDLINE | ID: mdl-23230758

RESUMO

OBJECTIVE: To establish an extracorporeal circulation (ECC) rat model, and evaluate the inflammatory response and organ injury induced in the model. METHODS: SD rats were anesthetized and cannulated from right common carotid artery to left femoral vein to establish the bypass of extracorporeal circulation. Then the rats were randomly divided into ECC group and sham group. The rats in ECC group were subjected to extracorporeal circulation for 2 hours and then rest for 2 hours, while the rats in sham group were only observed for 4 hours without extracorporeal circulation. After that, blood routine examination, blood gas analysis, the measurement of pro-inflammatory factors in bronchoalveolar lavage fluid and lung tissue were performed to evaluate the lung injury induced by ECC. Circulating endothelial cells were also calculated by flow cytometry to assess the vascular endothelial injury. RESULTS: At 2 hours after ECC, red blood cell counts in both groups kept normal, while leukocyte and neutrophil counts, plasmatic tumor necrosis factor-a level and neutrophil elastase level, circulating endothelial cells in the rats of ECC group were significantly higher than those in sham group. Tumor necrosis factor-alpha in bronchoalveolar lavage fluid and water content in lung of the ECC rats were also significantly higher, while the oxygenation index was significantly lower. Neutrophil infiltration was also observed in lung tissues with increased thickness of alveolar membrane in ECC group. CONCLUSION: The ECC model established from right common carotid artery to left femoral vein in our study can successfully induce systemic inflammatory response, and acute lung injury associated with inflammation.


Assuntos
Circulação Extracorpórea/efeitos adversos , Modelos Animais , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Lesão Pulmonar Aguda/etiologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley
12.
Front Pharmacol ; 13: 849101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712709

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disease, characterized by synovial inflammation in multiple joints. Triptolide (TP) is a disease-modifying anti-rheumatic drug (DMARD) highly effective in patients with RA and has anti-inflammatory properties. However, its clinical application has been limited owing to practical disadvantages. In the present study, hyaluronic acid (HA) hydrogel-loaded RGD-attached gold nanoparticles (AuNPs) containing TP were synthesized to alleviate the toxicity and increase therapeutic specificity. The hydrogels can be applied for targeted photothermal-chemo treatment and in vivo imaging of RA. Hydrogel systems with tyramine-modified HA (TA-HA) conjugates have been applied to artificial tissue models as surrogates of cartilage to investigate drug transport and release properties. After degradation of HA chains, heat was locally generated at the inflammation region site due to near-infrared resonance (NIR) irradiation of AuNPs, and TP was released from nanoparticles, delivering heat and drug to the inflamed joints simultaneously. RA can be penetrated with NIR light. Intraarticular administration of the hydrogels containing low dosage of TP with NIR irradiation improved the inflamed conditions in mice with collagen-induced arthritis (CIA). Additionally, in vitro experiments were applied to deeply verify the antirheumatic mechanisms of TP-PLGA-Au@RGD/HA hydrogels. TP-PLGA-Au@RGD/HA hydrogel treatment significantly reduced the migratory and invasive capacities of RA fibroblast-like synoviocytes (RA-FLS) in vitro, through the decrease of phosphorylation of mTOR and its substrates, p70S6K1, thus inhibiting the mTOR pathway.

13.
Clin Pharmacokinet ; 60(5): 585-601, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33723723

RESUMO

Drug metabolism is a critical process for the removal of unwanted substances from the body. In humans, approximately 80% of oxidative metabolism and almost 50% of the overall elimination of commonly used drugs can be attributed to one or more of various cytochrome P450 (CYP) enzymes from CYP families 1-3. In addition to the basic metabolic effects for elimination, CYP enzymes in vivo are capable of affecting the treatment outcomes in many cases. Drug-metabolizing CYP enzymes are mainly expressed in the liver and intestine, the two principal drug oxidation and elimination organs, where they can significantly influence the drug action, safety, and bioavailability by mediating phase I metabolism and first-pass metabolism. Furthermore, CYP-mediated local drug metabolism in the sites of action may also have the potential to impact drug response, according to the literature in recent years. This article underlines the ability of CYP enzymes to influence treatment outcomes by discussing CYP-mediated diversified drug metabolism in primary metabolic sites (liver and intestine) and typical action sites (brain and tumors) according to their expression levels and metabolic activity. Moreover, intrinsic and extrinsic factors of personal differential CYP phenotypes that contribute to interindividual variation of treatment outcomes are also reviewed to introduce the multifarious pivotal role of CYP-mediated metabolism and clearance in drug therapy.


Assuntos
Sistema Enzimático do Citocromo P-450 , Preparações Farmacêuticas , Humanos , Fígado , Microssomos Hepáticos , Resultado do Tratamento
14.
J Adv Res ; 34: 137-147, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35024186

RESUMO

Introduction: Endothelial damage (ED) has been implicated in accelerating the development of atherosclerosis. The latter condition is a risk factor for developing several cardiovascular diseases (CVDs) associated with high morbidity and mortality rates worldwide. Objectives: In our previous studies, we found naringenin (Nar), a bioactive flavanone compound, to protect against mitochondrial damage and oxidative stress. Though the pleiotropic effects of Nar have been well described, precise cytoprotective mechanisms of Nar against homocysteine (Hcy) induced ED remains elusive. Understanding these events may give an insight in to prevention and treatment of CVDs. Methods: After ruling out the NMDA-R1 mediated pathway, RNA-Seq, a novel transcriptomic technique uncovered AMPK signaling pathway was identified as the mechanism with which Nar corrects ED. Further in vivo and in vitro tests validated the role of Nar against ED. Results: In particular, Nar activates AMPKα/Sirt1 signaling pathway, which restores mitochondrial Ca2+ balance and ultimately lowered production of reactive oxygen species (ROS). Activated AMPKα/Sirt1 signaling pathway also up-regulates endothelial nitric oxide synthase (eNOS) activity, and then increasing the production of nitric oxide (NO), ultimately ameliorating ED. Conclusion: Nar could increase the ROS elimination and decrease eNOS uncoupling, subsequently upregulate the NO bioavailability and endothelial function by activating AMPKα/Sirt1 signaling pathway.


Assuntos
Flavanonas , Sirtuína 1 , Proteínas Quinases Ativadas por AMP/genética , Flavanonas/farmacologia , Homocisteína , Sirtuína 1/genética
15.
Am J Cancer Res ; 11(7): 3445-3460, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354854

RESUMO

Paclitaxel is a widely used anti-tumor chemotherapeutic drug. Solvent-based paclitaxel causes bone marrow suppression, allergic reactions, neurotoxicity and systemic toxicity, which are associated with non-specific cytotoxicity and side effects of fat-soluble solvents. Studies have explored various new nano-drug strategies of paclitaxel, including nanoparticle albumin-bound paclitaxel (nab-paclitaxel) to improve the water solubility and safety of paclitaxel. Nab-paclitaxel is a targeted solvent-free formulation that inhibits microtubule depolymerization to anticancer. It is easily taken up by tumor and immune cells owing to the nano-scaled size and superior biocompatibility. The internalized nab-paclitaxel exhibits significant immunostimulatory activities to promote cancer-immunity cycle. The aim of this study was to explore the synergistic effect of nab-paclitaxel in tumor antigen presentation, T cell activation, reversing the immunosuppressive pattern of tumor microenvironment (TME), and the synergistic effect with cytotoxic lymphocytes (CTLs) in clearance of tumor cells. The effects of nab-paclitaxel on modulation of cancer-immunity cycle, provides potential avenues for combined therapeutic rationale to improve efficacy of immunotherapy.

16.
Eur J Med Chem ; 221: 113519, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33984805

RESUMO

Arsenic (As), as well as its various compounds have been widely used for nearly 4000 years either as drugs or poisons. These compounds are valuable in the treatment of various diseases ranging from dermatosis to cancer, thereby emphasizing their important roles as therapeutic agents. The ability of As compounds, especially arsenic trioxide (ATO) in the treatment of acute promyelocytic leukemia (APL), has fundamentally altered people's understanding of the poison, and has become a major factor in the re-emergence of Western medicine candidates to treat leukemia and other solid tumors. However, long-term exposure to As has been correlated with numerous disadvantageous influences on health, particularly carcinogenesis. Importantly, accumulating evidence suggests that biotransformation of As, as a step to eliminate As from the human body, can induce alterations at the genetic and epigenetic levels, resulting in therapeutic effects or carcinogenesis. In this article, we aimed to provide a systematic overview of the primary contributions associated with As and its compounds, as well as the detailed mechanisms applied in APL cells and carcinogenic toxicology. This review may help to understand the underlying mechanisms and safe wide clinical applications of medicinal As along with its compounds.


Assuntos
Antineoplásicos/uso terapêutico , Arsenicais/uso terapêutico , Leucemia Promielocítica Aguda/tratamento farmacológico , Antineoplásicos/efeitos adversos , Arsenicais/efeitos adversos , Humanos , Leucemia Promielocítica Aguda/metabolismo
17.
Cell Death Dis ; 11(9): 797, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973135

RESUMO

Multidrug resistance (MDR) is the dominant challenge in the failure of chemotherapy in cancers. Phosphatidylinositol 3-kinase (PI3K) is a lipid kinase that spreads intracellular signal cascades and regulates a variety of cellular processes. PI3Ks are considered significant causes of chemoresistance in cancer therapy. Protein kinase B (AKT) is also a significant downstream effecter of PI3K signaling, and it modulates several pathways, including inhibition of apoptosis, stimulation of cell growth, and modulation of cellular metabolism. This review highlights the aberrant activation of PI3K/AKT as a key link that modulates MDR. We summarize the regulation of numerous major targets correlated with the PI3K/AKT pathway, which is further related to MDR, including the expression of apoptosis-related protein, ABC transport and glycogen synthase kinase-3 beta (GSK-3ß), synergism with nuclear factor kappa beta (NF-κB) and mammalian target of rapamycin (mTOR), and the regulation of glycolysis.


Assuntos
Resistência a Múltiplos Medicamentos/genética , Neoplasias/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células , Humanos , Neoplasias/tratamento farmacológico , Transdução de Sinais
18.
Int J Nanomedicine ; 15: 8369-8382, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33149581

RESUMO

INTRODUCTION: Auraptene (AUR), a natural bioactive prenyloxy coumarin, is a highly pleiotropic molecule that can bind to the MT1 receptor and can effectively reduce the proliferation and migration of breast cancer cells. Cisplatin (CDDP), as the first synthetic platinum-based anticancer drug, is widely used in the clinic due to its definite mechanism and therapeutic effect on diverse tumors. However, both of AUR and CDDP exhibit some disadvantages when used alone, including poor solubility, low bioavailability, lack of selectivity and systemic toxicity when they are used singly. METHODS: Therefore, the biodegradable materials hyaluronic acid (HA) and ß-cyclodextrin derivative (mono-(6-amino-mono-6-deoxy)-ß-CD, CD) were employed as carriers to load AUR and CDDP to form nanogel (CDDPHA-CD@AUR) capable of dual-targeted delivery and synergistic therapy for breast cancer and cell imaging. RESULTS: With the help of the CDDP-crosslinked CD-loaded structure, the newly synthesized nanogel exhibited excellent physiological stability and fluorescence effects. The release of AUR and CDDP was affected by the pH value, which was beneficial to the selective release in the tumor microenvironment. Cell experiments in vitro demonstrated that the nanogel could be selectively internalized by MCF-7 cells and exhibited low cytotoxicity to HK-2 cells. Antitumor experiments in vivo showed that the nanogel have better antitumor effects and lower systemic toxicity. CONCLUSION: Based on these, the nanogel loaded with AUR and CDDP have the potential for targeted delivery against breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Cisplatino/administração & dosagem , Cisplatino/uso terapêutico , Cumarínicos/administração & dosagem , Cumarínicos/uso terapêutico , Nanogéis/química , Animais , Neoplasias da Mama/patologia , Morte Celular , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Endocitose , Feminino , Hemólise , Humanos , Ácido Hialurônico/química , Concentração de Íons de Hidrogênio , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanogéis/ultraestrutura , Especificidade de Órgãos , Tamanho da Partícula , Polietilenoglicóis/química , Polietilenoimina/química , Coelhos , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Front Pharmacol ; 11: 605823, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505311

RESUMO

Aflatoxins (AFs) are commonly contaminating mycotoxins in foods and medicinal materials. Since they were first discovered to cause "turkey X" disease in the United Kingdom in the early 1960s, the extreme toxicity of AFs in the human liver received serious attention. The liver is the major target organ where AFs are metabolized and converted into extremely toxic forms to engender hepatotoxicity. AFs influence mitochondrial respiratory function and destroy normal mitochondrial structure. AFs initiate damage to mitochondria and subsequent oxidative stress. AFs block cellular survival pathways, such as autophagy that eliminates impaired cellular structures and the antioxidant system that copes with oxidative stress, which may underlie their high toxicities. AFs induce cell death via intrinsic and extrinsic apoptosis pathways and influence the cell cycle and growth via microribonucleic acids (miRNAs). Furthermore, AFs induce the hepatic local inflammatory microenvironment to exacerbate hepatotoxicity via upregulation of NF-κB signaling pathway and inflammasome assembly in the presence of Kupffer cells (liver innate immunocytes). This review addresses the mechanisms of AFs-induced hepatotoxicity from various aspects and provides background knowledge to better understand AFs-related hepatoxic diseases.

20.
Int J Biol Macromol ; 165(Pt A): 1264-1275, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33039536

RESUMO

Hyaluronic acid (HA) is a multifunctional high molecular weight polysaccharide produced by synoviocytes, fibroblasts, and chondrocytes, and is naturally found in many tissues and fluids, and more abundantly in articular cartilage and synovial fluid. Naturally occurring HA is thought to participate in many biological processes, such as regulation of cell adhesion and cell motility, manipulation of cell differentiation and proliferation, and providing mechanical properties to tissues (Girish and Kemparaju, 2007). Due to its excellent physicochemical properties such as high viscosity, elasticity, biodegradability, biocompatibility, nontoxicity, and nonimmunogenicity, HA based formulations have a wide range of applications and serves as a promising rejuvenating biomacromolecule in biomedical applications. In recent decades, HA is currently a popular topic, and has been widely used in bone related diseases for its remarkable efficacy in articular cartilage lubrication, analgesia, anti-inflammation, immunomodulatory, chondroprotection, anti-cancer and etc. Moreover, the safety and tolerability of HA based formulations have also been well-documented for treatment of various types of bone related diseases (Chen et al., 2018). This review gives a deep understanding on the special benefits and provides a mechanism-based rationale for the use of HA in bone related diseases conditions with special reference to osteoarthritis (OA), rheumatoid arthritis (RA), bone metastatic cancers.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Doenças Ósseas/tratamento farmacológico , Ácido Hialurônico/uso terapêutico , Osteoartrite/tratamento farmacológico , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Artrite Reumatoide/patologia , Doenças Ósseas/patologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/crescimento & desenvolvimento , Diferenciação Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Humanos , Ácido Hialurônico/química , Osteoartrite/patologia , Rejuvenescimento/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA