Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 66: 265-273, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29628094

RESUMO

As one of the most important water pollutants, ammonia nitrogen emissions have increased year by year, which has attracted people's attention. Catalytic ozonation technology, which involves production of ·OH radical with strong oxidation ability, is widely used in the treatment of organic-containing wastewater. In this work, MgO-Co3O4 composite metal oxide catalysts prepared with different fabrication conditions have been systematically evaluated and compared in the catalytic ozonation of ammonia (50mg/L) in water. In terms of high catalytic activity in ammonia decomposition and high selectivity for gaseous nitrogen, the catalyst with MgO-Co3O4 molar ratio 8:2, calcined at 500°C for 3hr, was the best one among the catalysts we tested, with an ammonia nitrogen removal rate of 85.2% and gaseous nitrogen selectivity of 44.8%. In addition, the reaction mechanism of ozonation oxidative decomposition of ammonia nitrogen in water with the metal oxide catalysts was discussed. Moreover, the effect of coexisting anions on the degradation of ammonia was studied, finding that SO42- and HCO3- could inhibit the catalytic activity while CO32- and Br- could promote it. The presence of coexisting cations had very little effect on the catalytic ozonation of ammonia nitrogen. After five successive reuses, the catalyst remained stable in the catalytic ozonation of ammonia.


Assuntos
Amônia/química , Nitrogênio/química , Ozônio/química , Poluentes Químicos da Água/química , Amônia/análise , Metais/química , Modelos Químicos , Nitrogênio/análise , Óxidos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
2.
J Environ Sci (China) ; 45: 124-30, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27372126

RESUMO

In order to enhance the removal efficiency of As(III), a pre-oxidation process is generally applied first to convert As(III) to As(V), which may cause unwanted new contaminants. To overcome this problem, efforts were made to develop an effective way to remove As(III) directly without an oxidation step. The effect of polyacrylamide polymers (PAMs) such as anionic PAM, cationic PAM and nonionic PAM, on As(III) ion adsorption by spent grain (SG) was investigated. The physico-chemical properties of the three PAM-polymerized SGs (APSG (anionic PAM-polymerized modified spent grain), CPSG (cationic PAM-polymerized spent grain) and NPSG (nonionic PAM-polymerized spent grain)) were analyzed using Fourier transform infrared (FT-IR), scanning electron microscope (SEM) and zeta potential. Batch experimental data showed that the sequence of preferential adsorption for As(III) was APSG>CPSG>NPSG. Active functional groups such as amino group (NH2), carbonyl group (CO), C-N bond of the amide group (CONH2), and hydroxyl group (O-H) were responsible for As(III) adsorption. Many tubular structures occurring on the surface of APSG possibly increase the specific surface areas and favor the adsorption of As(III) ions. A fixed-bed study was carried out by using APSG as an adsorbent for As(III) from water. Three factors such as bed height, initial concentration and flow rate were studied, and breakthrough curves of As(III) were obtained. The Adams-Bohart model was used to analyze the experimental data and the model parameters were evaluated.


Assuntos
Resinas Acrílicas/química , Arsênio/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Arsênio/análise , Oxirredução , Poluentes Químicos da Água/análise
3.
Sci Rep ; 14(1): 23073, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367104

RESUMO

A large amount of arsenic-containing wastewater discharged by the non-ferrous metal industry will cause serious environmental problems if it is not properly treated. Pyrolysis char of waste tire is a kind of solid waste. Since the surface properties of tire derived char (TC) are affected by tar/ash adhesion during pyrolysis, it is necessary to modify TC to treat wastewater containing As(V) effectively as an adsorbent. At present, most studies on the modification of TC are prepared into activated carbon by high temperature activation in N2 atmosphere. In this study, TC was modified at room temperature and air atmosphere, and Fe(OH)3-TCNaOH adsorbent with particle size of 61-75 µm was obtained under the premise of the removal rate of As(V) and the settling performance of the adsorbent. When the initial concentration of As(V) was 5 mg/L, the removal rate of As(V) by Fe(OH)3-TCNaOH with a particle size of 61-75 µm could reach 90% within 30 min under a wide pH range (3-9). The adsorption of As(V) by Fe(OH)3-TCNaOH was most affected by the coexistence of PO43-, which resulted in the removal rate of As(V) decreased by about 20%. The adsorption mechanism shows that the significant increase in the number of 3-5 nm mesoporous pores of Fe(OH)3-TCNaOH and the formation of H bonds are beneficial to the adsorption of Fe(OH)3-TCNaOH to As(V), and improve the stability of Fe-As complex.

4.
Sci Rep ; 14(1): 20326, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223268

RESUMO

With the development of industry and agriculture, eutrophication caused by increasing amounts of phosphorus in the environment has attracted people's attention. On the other hand, copper tailings (CT) is a kind of solid waste with large quantity, large area, and easy to cause groundwater and soil pollution. CT is also a potential resource because of its large specific surface area. CT is intended to be used as an adsorbent for removal phosphate in water, but trace heavy metals and a small amount of phosphate in CT may bring negative effects. Calcium hydroxide (Ca(OH)2) was used to modify CT (CCT), hoping to fix the heavy metals and phosphate in CT at the same time. It was found that the removal capacity of CCT was significantly higher than that of CT. The process of phosphate removal by CCT involves electrostatic sorption and surface precipitation, and there is a synergistic effect between CT and Ca(OH)2. The phosphate removal rate of CCT-0.4 increased with the increase of pH value under alkaline conditions. The XRD patterns of phosphate sorption by CCT mean that Ca3(PO4)2, Ca5(PO4)3(OH) and AlPO4 exist in CCT after phosphate removal, indicating that surface precipitation occurs during the removal process. In summary, the removal mechanism of phosphate by CCT is mainly electrostatic attraction and surface precipitation.

5.
Huan Jing Ke Xue ; 43(1): 387-397, 2022 Jan 08.
Artigo em Zh | MEDLINE | ID: mdl-34989523

RESUMO

Heavy metal ion wastewater poses a serious threat to human health and the environment. The adsorption method is an important method to remove heavy metal ions from heavy metal wastewater. Magnetic attapulgite (ATP) composite nanomaterials with excellent adsorption properties were prepared by grafting the Fe3O4 nanoparticles and using 3-aminopropyl triethoxy silane (APTES) modification. The prepared ATP-Fe3O4-APTES materials were used as adsorbents and applied to the treatment of heavy metal ion wastewater. The structure and surface properties of the materials were characterized by FT-IR, XRD, SEM, TEM, and BET characterization, Zeta potential, and VSM. The effects of pH, adsorption time, adsorption temperature, and initial concentration of Pb2+ on the adsorption properties of the ATP-Fe3O4-PEI materials were investigated. The results show that the maximum adsorption capacity of the materials for Pb2+ was 129.32 mg·g-1 under optimum conditions. The adsorption process conformed to the pseudo second order kinetic model and Langmuir adsorption isotherm, which indicates that the adsorption of Pb2+ is a monolayer chemical adsorption and a spontaneous endothermic process. The driving force of adsorption mainly comes from the coordination between the amino group (-NH2) on the ATP-Fe3O4-APTES surface and Pb2+. These results indicate that the functionalized magnetic attapulgite adsorbent has good adsorption properties for heavy metal ions and is expected to be used in the treatment of heavy metal ion wastewater.


Assuntos
Vermelho Congo , Poluentes Químicos da Água , Adsorção , Humanos , Cinética , Compostos de Magnésio , Compostos de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
6.
Water Environ Res ; 83(4): 368-72, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21553592

RESUMO

Using modified banana peel as a biosorbent to treat water containing ammonia-nitrogen (NH4(+)-N) was studied. Related parameters in the sorptional process, such as chemical modification, pH, and contact time were investigated. The experimental results showed that banana peel modified by 30% sodium hydroxide (NaOH) and mesothermal microwaves (NMBPs) can greatly improve the sorption removal for NH4(+)-N. The kinetics study revealed that the sorption behavior better fit the pseudo-second-order equation than the Lagergren first-order equation. Fourier transform infrared absorption spectrum analysis of banana peels and NMBPs before and after NH4(+)-N sorption revealed that the activity of hydroxyl groups at the surface of the banana peels was strengthened after modification, and nitrogenous groups appeared after biosorpting the NH4(+)-N. In the end, metallurgical wastewater containing a low concentration of NH4(+)-N was treated by NMBPs. The initial NH4(+)-N concentration of 138 mg/L was reduced to 13 mg/L in 25 minutes by 4 g/L NMBPs at pH 10.


Assuntos
Amônia/química , Musa , Nitrogênio/química , Adsorção , Concentração de Íons de Hidrogênio
7.
Sci Rep ; 10(1): 7672, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32376917

RESUMO

Ammonium-nitrogen (NH4+-N) recovery from high concentration of NH4+-N-containing wastewater by struvite (MgNH4PO4·6H2O, MAP) precipitation method has been realized, but whether NH4+-N recovery under different reagent adding sequence of NaOH, solid Mg salt and P salt can generate different effects, remains ambiguous. In view of the problem, four modes to add reagents were investigated in detail on the formation of struvite. The results show that the Mode IV (M-IV, i.e. using 50% NH4+-N wastewater to dissolve completely the Mg salt and the P salt, respectively and then simultaneously poured into a beaker to mix the solution evenly and adjust the pH to 9.5.) has the highest NH4+-N recovery efficiency (90.80%) and the maximum mass of precipitates (896 mg) because of the more amount of alkali and initial seed formation. From the morphology of the obtained precipitates, it can be seen that sample M-IV is more loose and porous than the others. XRD patterns show that the four products under the different modes basically agree with the standard MAP.

8.
Carbohydr Polym ; 245: 116572, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32718649

RESUMO

Chitosan modified magnetic kaolin (CS/kaolin/Fe3O4) composite was prepared by a facile one-pot coprecipitation method and used for the removal of methyl orange (MO) from aqueous medium. Under alkaline condition, Fe3O4 nanoparticles were deposited on the kaolin layer by in-situ growth method and chitosan was deposited on the kaolin layer by pH-precipitation method. With the modification of CS, adsorption sites for anionic species were introduced onto the adsorbent. The prepared CS/kaolin/Fe3O4 could remove more than 94 % of MO and showed a high saturated adsorption capacity of 349.7 mg/g. The adsorption process was controlled by film diffusion and well described by Langmuir model. The thermodynamic studies indicated that the adsorption process was exothermic in nature. Furthermore, the adsorbent exhibited satisfactory recycle ability. The results suggested that the modification with CS broadened the application scope of kaolin in anionic species removal and the CS/kaolin/Fe3O4 composite could be a promising adsorbent for wastewater treatment.


Assuntos
Compostos Azo/química , Precipitação Química , Quitosana/química , Óxido Ferroso-Férrico/química , Caulim/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Purificação da Água/métodos , Adsorção , Concentração de Íons de Hidrogênio , Indicadores e Reagentes/química , Temperatura , Termodinâmica , Águas Residuárias/química , Água/química , Poluentes Químicos da Água/química
9.
Water Environ Res ; 81(9): 843-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19860140

RESUMO

Using chemically modified spent grains as a new biosorbent to treat arsenate and arsenite ions was studied. The influences of pH, contact time, initial concentration and temperature were studied in batch experiments. The equilibrium process was described well by Langmuir isotherm model with maximum biosorption capacities of 13.39 and 4.86 mg/g of arsenate and arsenite on spent grains, respectively. The initial removal was rapid, and equilibrium was established in less than 180 min. Good correlation coefficients were obtained for the pseudo-second-order kinetic model. In the binary metal solutions, the finite sites on the surface of spent grains showed a greater preference for As(V) ions. The enthalpy of biosorption was exothermic and the increase in As(III) removal was larger than that of As(V) over the same rise in temperature. In this study, spent grains proved to be suitable for removal of As(V) and As(III) from the effluent of metallurgical industry.


Assuntos
Arseniatos/química , Arsenitos/química , Grão Comestível/química , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Purificação da Água/métodos
10.
Artigo em Inglês | MEDLINE | ID: mdl-31212949

RESUMO

Excessive ammonia is a common pollutant in the wastewater, which can cause eutrophication, poison aquatic life, reduce water quality and even threaten human health. Ammonia in aqueous solution was converted using various systems, i.e., ozonation (O3), ultrasound (US), catalyst (SrO-Al2O3), ultrasonic ozonation (US/O3), ultrasound-enhanced SrO-Al2O3 (SrO-Al2O3/US), SrO-Al2O3 ozonation (SrO-Al2O3/O3) and ultrasound-enhanced SrO-Al2O3 ozonation (SrO-Al2O3/US/O3) under the same experimental conditions. The results indicated that the combined SrO-Al2O3/US/O3 process achieved the highest NH4+ conversion rate due to the synergistic effect between US, SrO-Al2O3 and O3. Additionally, the effect of different operational parameters on ammonia oxidation in SrO-Al2O3/O3 and SrO-Al2O3/US/O3 systems was evaluated. It was found that the ammonia conversion increased with the increase of pH value in both systems. The NH3(aq) is oxidized by both O3 and ·OH at high pH, whereas the NH4+ oxidation is only carried out through ·OH at low pH. Compared with the SrO-Al2O3/O3 system, the ammonia conversion was significantly increased, the reaction time was shortened, and the consumption of catalyst dosage and ozone were reduced in the SrO-Al2O3/US/O3 system. Moreover, reasonable control of ultrasonic power and duty cycle can further improve the ammonia conversion rate. Under the optimal conditions, the ammonia conversion and gaseous nitrogen yield reached 83.2% and 51.8%, respectively. The presence of tert-butanol, CO32-, HCO3-, and SO42- inhibited the ammonia oxidation in the SrO-Al2O3/US/O3 system. During ammonia conversion, SrO-Al2O3 catalyst not only has a certain adsorption effect on NH4+ but accelerates the O3 decomposition to ·OH.


Assuntos
Amônia/química , Catálise , Ozônio/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , China , Oxirredução
11.
J Hazard Mater ; 160(1): 168-72, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18417278

RESUMO

Arsenic is a toxic element and may be found in natural waters as well as in industrial waters. Leaching of arsenic from industrial wastewater into groundwater may cause significant contamination, which requires proper treatment before its use as drinking water. The present study described the removal of As(V) on bone char in batch studies conducted as a function of pH, dosage of adsorbent, and contact time. Kinetics revealed that uptake of As(V) ion by bone char was very rapid in the first 30min and equilibrium time was independent of initial As(V) concentration. And the adsorption process followed a first-order kinetics equation. The arsenic removal was strongly dependent on pH and dosage of adsorbent. Fourier transform infrared spectra of bone char before and after As(V) adsorption demonstrated that Ca-OH functional group plays an important role for As(V) ions removal, and the mechanisms of the removal of As(V) on bone char was complex mechanism where both co-precipitation and ion exchange. The results suggested that bone char can be used effectively for the removal of As(V) ion from aqueous solution.


Assuntos
Arsênio/química , Osso e Ossos/química , Adsorção , Concentração de Íons de Hidrogênio , Indicadores e Reagentes , Troca Iônica , Cinética , Soluções
12.
Artigo em Inglês | MEDLINE | ID: mdl-30081535

RESUMO

The new surfactant-enhanced metal oxides composite catalysts have been prepared using solid state method and characterized by the N2-adsorption-desorption, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscope (TEM), and X-ray diffraction (XRD) techniques. Catalytic activity of the synthesized powders has been investigated in the liquid-phase catalytic ozonation ammonia nitrogen (NH4⁺) (50 mg/L). Especially, the effect of parameters such as optimum molar ratio for metal salt, NaOH and surfactants, temperature, and time of calcinations was also considered. Leveraging both high catalytic activity in NH4⁺degradation and more harmless selectivity for gaseous nitrogen, the CTAB/NiO catalyst is the best among 24 tested catalysts, which was generated by calcining NiCl2·6H2O, NaOH, and CTAB under the molar ratio 1:2.1:0.155 at 300 °C for 2 h. With CTAB/NiO, NH4⁺ removal rate was 95.93% and gaseous nitrogen selectivity was 80.98%, under the conditions of a pH of 9, ozone flow of 12 mg/min, dosage of catalyst 1.0 g/L, reaction time 120 min, and magnetic stirring speed 600 r/min in room temperature.


Assuntos
Amônia/química , Óxidos/química , Ozônio/química , Tensoativos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Catálise , Metais/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nitrogênio/química , Espectrometria por Raios X , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA