Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379311

RESUMO

The ultra-short baseline underwater positioning is one of the most widely applied methods in underwater positioning and navigation due to its simplicity, efficiency, low cost, and accuracy. However, there exists environmental noise, which has negative impacts on the positioning accuracy during the ultra-short baseline (USBL) positioning process, which results in a large positioning error. The positioning result may lead to wrong decision-making in the latter processing. So, it is necessary to consider the error sources, and take effective measurements to minimize the negative impact of the noise. In our work, we propose a USBL positioning system with Kalman filtering to improve the positioning accuracy. In this system, we first explore a new kind of element array to accurately capture the acoustic signals from the object. We then organically combine the Kalman filters with the array elements to filter the acoustic signals, using the minimum mean-square error rule to obtain accurate acoustic signals. We got the high-precision phase difference information based on the non-equidistant quaternary original array and the phase difference acquisition mechanism. Finally, on account of the obtained accurate phase difference information and position calculation, we determined the coordinates of the underwater target. Comprehensive evaluation results demonstrate that our proposed USBL positioning method based on the Kalman filter algorithm can effectively enhance the positioning accuracy.

2.
Sensors (Basel) ; 19(20)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640216

RESUMO

Because of the complex task environment, long working distance, and random drift of the gyro, the positioning error gradually diverges with time in the design of a strapdown inertial navigation system (SINS)/Doppler velocity log (DVL) integrated positioning system. The use of velocity information in the DVL system cannot completely suppress the divergence of the SINS navigation error, which will result in low positioning accuracy and instability. To address this problem, this paper proposes a SINS/DVL integrated positioning system based on a filtering gain compensation adaptive filtering technology that considers the source of error in SINS and the mechanism that influences the positioning results. In the integrated positioning system, an organic combination of a filtering gain compensation adaptive filter and a filtering gain compensation strong tracking filter is explored to fuse position information to obtain higher accuracy and a more stable positioning result. Firstly, the system selects the indirect filtering method and uses the integrated positioning error to model the navigation parameters of the system. Then, a filtering gain compensation adaptive filtering method is developed by using the filtering gain compensation algorithm based on the error statistics of the positioning parameters. The positioning parameters of the system are filtered and information on errors in the navigation parameters is obtained. Finally, integrated with the positioning parameter error information, the positioning parameters of the system are solved, and high-precision positioning results are obtained to accurately position autonomous underwater vehicles (AUVs). The simulation results show that the SINS/DVL integrated positioning method, based on the filtering gain compensation adaptive filtering technology, can effectively enhance the positioning accuracy.

3.
Soft Robot ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078729

RESUMO

Soft actuators offer numerous potential applications; however, challenges persist in achieving a high driving force and fast response speed. In this work, we present the design, fabrication, and analysis of a soft pneumatic bistable actuator (PBA) mimicking jellyfish subumbrellar muscle motion for waterjet propulsion. Drawing inspiration from the jellyfish jet propulsion and the characteristics of bistable structure, we develop an elastic band stretch prebending PBA with a simple structure, low inflation cost, exceptional driving performance, and stable driving force output. Through a bionic analysis of jellyfish body structure and motion, we integrate the PBA into a jellyfish-like prototype, enabling it to achieve jet propulsion. To enhance the swimming performance, we introduce a skin-like structure for connecting the soft actuator to the jellyfish-like soft robot prototype. This skin-like structure optimizes the fluid dynamics during jet propulsion, resulting in improved efficiency and maneuverability. Our study further analyzes the swimming performance of the jellyfish-like prototype, demonstrating a swimming speed of 3.8 cm/s (0.32 body length/s, BL/s) for the tethered prototype and 4.7 cm/s (0.38 BL/s) for the untethered prototype. Moreover, we showcase the jellyfish-like prototype's notable load-bearing capacity and fast-forward swimming performance compared to other driving methods for underwater biomimetic robots. This work provides valuable insights for the development of highly agile and fast responsive soft robots that imitate the subumbrellar muscle of jellyfish for efficient water-jet propulsion, utilizing skin-like structures to enhance swimming performance.

4.
Nat Commun ; 14(1): 7097, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925504

RESUMO

The deep ocean, Earth's untouched expanse, presents immense challenges for exploration due to its extreme pressure, temperature, and darkness. Unlike traditional marine robots that require specialized metallic vessels for protection, deep-sea species thrive without such cumbersome pressure-resistant designs. Their pressure-adaptive forms, unique propulsion methods, and advanced senses have inspired innovation in designing lightweight, compact soft machines. This perspective addresses challenges, recent strides, and design strategies for bioinspired deep-sea soft robots. Drawing from abyssal life, it explores the actuation, sensing, power, and pressure resilience of multifunctional deep-sea soft robots, offering game-changing solutions for profound exploration and operation in harsh conditions.

5.
Math Biosci Eng ; 19(12): 12617-12631, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36654014

RESUMO

In this paper, we describe an approach based on improved Hidden Markov Model (HMM) for fault diagnosis of underwater thrusters in complex marine environments. First, considering the characteristics of thruster data, we design a three-step data preprocessing method. Then, we propose a fault classification method based on HMMs trained by Particle Swarm Optimization (PSO) for better performance than methods based on vanilla HMMs. Lastly, we verify the effectiveness of the proposed approach using thruster samples collected from a fault emulation experimental platform. The experiments show that the PSO-based training method for HMM improves the accuracy of thruster fault diagnosis by 17.5% compared with vanilla HMMs, proving the effectiveness of the method.


Assuntos
Algoritmos
6.
IEEE Trans Cybern ; 52(9): 9414-9427, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33705336

RESUMO

In this article, a novel thruster information fusion fault diagnosis method for the deep-sea human occupied vehicle (HOV) is proposed. A deep belief network (DBN) is introduced into the multisensor information fusion model to identify uncertain and unknown, continuously changing fault patterns of the deep-sea HOV thruster. Inputs for the DBN information fusion fault diagnosis model are the control voltage, feedback current, and rotational speed of the deep-sea HOV thruster; and the output is the corresponding fault degree parameter ( s ), which indicates the pattern and degree of the thruster fault. In order to illustrate the effectiveness of the proposed fault diagnosis method, a pool experiment under different simulated fault cases is conducted in this study. The experimental results have proved that the DBN information fusion fault diagnosis method can not only diagnose the continuously changing, uncertain, and unknown thruster fault but also has higher identification accuracy than the information fusion fault diagnosis methods based on traditional artificial neural networks.


Assuntos
Redes Neurais de Computação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA