RESUMO
Analyzing the molecular structure-photophysical property correlations of metal nanoclusters to accomplish function-oriented photocatalysis could be challenging. Here, the selective heteroatom alloying has been exploited to a Au15 nanocluster, making up a structure-correlated nanocluster series, including homogold Au15, bimetallic AgxAu15-x and CuxAu15-x, trimetallic AgxCuyAu15-x-y, and tetrametallic Pt1AgxCuyAu15-x-y. Their structure-dependent photophysical properties were investigated due to the atomically precise structures of these nanoclusters. Cu-alloyed CuxAu15-x showed intense phosphorescence and the highest singlet oxygen production efficiency. Moreover, the generation of 1O2 species from excited nanoclusters enabled CuxAu15-x as a suitable catalyst for efficient photocatalytic oxidation of silyl enol ethers to produce α,ß-unsaturated carbonyl compounds. The generality and applicability of the CuxAu15-x catalysts toward different photocatalytic oxidations were assessed. Overall, this study presents an intriguing Au15-based cluster series enabling an atomic-level understanding of structure-photophysical property correlations, which hopefully provides guidance for the fabrication of cluster-based catalysts with customized photocatalytic performance.
RESUMO
The utilization of photogenerated carbene species to perform N-H insertion reactions has attracted considerable attention in the past few years. In this Article, we disclose a visible-light-promoted N-H insertion of 3-aminomethylated maleimides with aryl diazoacetates under sole blue LED irradiation. Continuous flow reactor technology was exploited to improve the reaction efficiency. By simply varying the reaction conditions, the formed N-H insertion products could be selectively transferred to bioimportant octahydropyrrolo[3,4-c]pyrroles and E-selective trisubstituted olefins.
RESUMO
Vinyldiazo compounds are one of the most important synthons in the construction of a cyclic ring. Most photochemical transformations of vinyldiazo compounds are mainly focusing on utilization of their CâC bond site, while reactions taking place at terminal nitrogen atom are largely unexplored. Herein, a photocatalytic cascade radical cyclization of LBRs with vinyldiazo reagents through sequential BâN/CâN bond formation is described. The reaction starts with the addition of LBRs (Lewis base-boryl radicals) at diazo site, followed by intramolecular radical cyclization to access a wide range of important boron-handled pyrazoles in good to excellent yields. Control experiments, together with detailed mechanism studies well explain the observed reactivity. Further studies demonstrate the utility of this approach for applications in pharmaceutical and agrochemical research.
RESUMO
Herein we report a site-selective cyclopropanation of N-heterocyclic carbene (NHC)-borane complexes via photochemical carbene transfer reactions. By subtle changes to the reaction conditions, this approach can be further extended toward the difunctionalization of NHC-boranes via cyclopropanation and the B-H insertion reaction. Further investigations in photochemical continuous-flow applications and synthetic transformations proved the utility of the method. Theoretical calculations and control experiments were performed to explain the observed selectivity.
RESUMO
A formal [3 + 2]-cycloaddition reaction of 2 H-azirines with nitrosoarenes has been achieved under irradiation by visible light with the assistance of organic dye photoredox catalyst. This method utilizes nitrosoarenes as efficient radical acceptors and provides a green and powerful method for a series of biologically important 1,2,4-oxadiazole derivatives in moderate to good yields.