RESUMO
Bacteriocins, which have narrow-spectrum activity and limited adverse effects, are promising alternatives to antibiotics. In this study, we identified klebicin E (KlebE), a small bacteriocin derived from Klebsiella pneumoniae. KlebE exhibited strong efficacy against multidrug-resistant K. pneumoniae isolates and conferred a significant growth advantage to the producing strain during intraspecies competition. A giant unilamellar vesicle leakage assay demonstrated the unique membrane permeabilization effect of KlebE, suggesting that it is a pore-forming toxin. In addition to a C-terminal toxic domain, KlebE also has a disordered N-terminal domain and a globular central domain. Pulldown assays and soft agar overlay experiments revealed the essential role of the outer membrane porin OmpC and the Ton system in KlebE recognition and cytotoxicity. Strong binding between KlebE and both OmpC and TonB was observed. The TonB-box, a crucial component of the toxin-TonB interaction, was identified as the 7-amino acid sequence (E3ETLTVV9) located in the N-terminal region. Further studies showed that a region near the bottom of the central domain of KlebE plays a primary role in recognizing OmpC, with eight residues surrounding this region identified as essential for KlebE toxicity. Finally, based on the discrepancies in OmpC sequences between the KlebE-resistant and sensitive strains, it was found that the 91st residue of OmpC, an aspartic acid residue, is a key determinant of KlebE toxicity. The identification and characterization of this toxin will facilitate the development of bacteriocin-based therapies targeting multidrug-resistant K. pneumoniae infections.
Assuntos
Bacteriocinas , Klebsiella pneumoniae , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bacteriocinas/genética , Bacteriocinas/metabolismo , Bacteriocinas/farmacologia , Bacteriocinas/toxicidade , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Porinas/genética , Porinas/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínios Proteicos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacosRESUMO
Although it is widely accepted that herpesviruses utilize host RNA polymerase II (RNAPII) to transcribe viral genes, the mechanism of utilization varies significantly among herpesviruses. With the exception of herpes simplex virus 1 (HSV-1) in alpha-herpesviruses, the mechanism by which RNAPII transcribes viral genes in the remaining alpha-herpesviruses has not been reported. In this study, we investigated the transcriptional mechanism of an avian alpha-herpesvirus, Anatid herpesvirus 1 (AnHV-1). We discovered for the first time that hexamethylene-bis-acetamide-inducing protein 1 (HEXIM1), a major inhibitor of positive elongation factor B (P-TEFb), was significantly upregulated during AnHV-1 infection, and its expression was dynamically regulated throughout the progression of the disease. However, the expression level of HEXIM1 remained stable before and after HSV-1 infection. Excessive HEXIM1 assists AnHV-1 in progeny virus production, gene expression, and RNA polymerase II recruitment by promoting the formation of more inactive P-TEFb and the loss of RNAPII S2 phosphorylation. Conversely, the expression of some host survival-related genes, such as SOX8, CDK1, MYC, and ID2, was suppressed by HEXIM1 overexpression. Further investigation revealed that the C-terminus of the AnHV-1 US1 gene is responsible for the upregulation of HEXIM1 by activating its promoter but not by interacting with P-TEFb, which is the mechanism adopted by its homologs, HSV-1 ICP22. Additionally, the virus proliferation deficiency caused by US1 deletion during the early infection stage could be partially rescued by HEXIM1 overexpression, suggesting that HEXIM1 is responsible for AnHV-1 gaining transcription advantages when competing with cells. Taken together, this study revealed a novel HEXIM1-dependent AnHV-1 transcription mechanism, which has not been previously reported in herpesvirus or even DNA virus studies.IMPORTANCEHexamethylene-bis-acetamide-inducing protein 1 (HEXIM1) has been identified as an inhibitor of positive transcriptional elongation factor b associated with cancer, AIDS, myocardial hypertrophy, and inflammation. Surprisingly, no previous reports have explored the role of HEXIM1 in herpesvirus transcription. This study reveals a mechanism distinct from the currently known herpesvirus utilization of RNA polymerase II, highlighting the dependence on high HEXIM1 expression, which may be a previously unrecognized facet of the host shutoff manifested by many DNA viruses. Moreover, this discovery expands the significance of HEXIM1 in pathogen infection. It raises intriguing questions about whether other herpesviruses employ similar mechanisms to manipulate HEXIM1 and if this molecular target can be exploited to limit productive replication. Thus, this discovery not only contributes to our understanding of herpesvirus infection regulation but also holds implications for broader research on other herpesviruses, even DNA viruses.
Assuntos
Anseriformes , Fator B de Elongação Transcricional Positiva , Proteínas de Ligação a RNA , Fatores de Transcrição , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transcrição Viral , AnimaisRESUMO
BACKGROUND: The disease caused by Riemerella anatipestifer (R. anatipestifer, RA) results in large economic losses to the global duck industry every year. Serovar-related genomic variation, such as the O-antigen and capsular polysaccharide (CPS) gene clusters, has been widely used for serotyping in many gram-negative bacteria. RA has been classified into at least 21 serovars based on slide agglutination, but the molecular basis of serotyping is unknown. In this study, we performed a pan-genome-wide association study (Pan-GWAS) to identify the genetic loci associated with RA serovars. RESULTS: The results revealed a significant association between the putative CPS synthesis gene locus and the serological phenotype. Further characterization of the CPS gene clusters in 11 representative serovar strains indicated that they were highly diverse and serovar-specific. The CPS gene cluster contained the key genes wzx and wzy, which are involved in the Wzx/Wzy-dependent pathway of CPS synthesis. Similar CPS loci have been found in some other species within the family Weeksellaceae. We have also shown that deletion of the wzy gene in RA results in capsular defects and cross-agglutination. CONCLUSIONS: This study indicates that the CPS synthesis gene cluster of R. anatipestifer is a serotype-specific genetic locus. Importantly, our finding provides a new perspective for the systematic analysis of the genetic basis of the R anatipestifer serovars and a potential target for establishing a complete molecular serotyping scheme.
Assuntos
Doenças das Aves Domésticas , Riemerella , Animais , Sorogrupo , Estudo de Associação Genômica Ampla , Riemerella/genética , Patos/genética , Patos/microbiologia , Doenças das Aves Domésticas/microbiologiaRESUMO
BACKGROUND: Riemerella anatipestifer encodes an iron acquisition system, but whether it encodes the iron efflux pump and its role in antibiotic resistance are largely unknown. OBJECTIVES: To screen and identify an iron efflux gene in R. anatipestifer and determine whether and how the iron efflux gene is involved in antibiotic resistance. METHODS: In this study, gene knockout, streptonigrin susceptibility assay and inductively coupled plasma mass spectrometry were used to screen for the iron efflux gene ietA. The MIC measurements, scanning electron microscopy and reactive oxygen species (ROS) detection were used to verify the role of IetA in aztreonam resistance and its mechanism. Mortality and colonization assay were used to investigate the role of IetA in virulence. RESULTS: The deletion mutant ΔietA showed heightened susceptibility to streptonigrin, and prominent intracellular iron accumulation was observed in ΔfurΔietA under excess iron conditions. Additionally, ΔietA exhibited increased sensitivity to H2O2-produced oxidative stress. Under aerobic conditions with abundant iron, ΔietA displayed increased susceptibility to the ß-lactam antibiotic aztreonam due to heightened ROS production. However, the killing efficacy of aztreonam was diminished in both WT and ΔietA under anaerobic or iron restriction conditions. Further experiments demonstrated that the efficiency of aztreonam against ΔietA was dependent on respiratory complexes â and â ¡. Finally, in a duckling model, ΔietA had reduced virulence compared with the WT. CONCLUSION: Iron efflux is critical to alleviate oxidative stress damage and ß-lactam aztreonam killing in R. anatipestifer, which is linked by cellular respiration.
Assuntos
Antibacterianos , Aztreonam , Ferro , Testes de Sensibilidade Microbiana , Estresse Oxidativo , Riemerella , Estresse Oxidativo/efeitos dos fármacos , Ferro/metabolismo , Animais , Antibacterianos/farmacologia , Riemerella/efeitos dos fármacos , Riemerella/genética , Riemerella/patogenicidade , Riemerella/metabolismo , Aztreonam/farmacologia , Infecções por Flavobacteriaceae/microbiologia , Virulência , Resistência beta-Lactâmica , Patos , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Estreptonigrina/farmacologia , Técnicas de Inativação de Genes , Doenças das Aves Domésticas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismoRESUMO
Porcine epidemic diarrhea virus (PEDV) has caused huge economic losses to the global pig industry. The swine enteric coronavirus spike (S) protein recognizes various cell surface molecules to regulate viral infection. In this study, we identified 211 host membrane proteins related to the S1 protein by pulldown combined with liquid-chromatography tandem mass spectrometry (LC-MS/MS) analysis. Among these, heat shock protein family A member 5 (HSPA5) was identified through screening as having a specific interaction with the PEDV S protein, and positive regulation of PEDV infection was validated by knockdown and overexpression tests. Further studies verified the role of HSPA5 in viral attachment and internalization. In addition, we found that HSPA5 interacts with S proteins through its nucleotide-binding structural domain (NBD) and that polyclonal antibodies can block viral infection. In detail, HSPA5 was found to be involved in viral trafficking via the endo-/lysosomal pathway. Inhibition of HSPA5 activity during internalization would reduce the subcellular colocalization of PEDV with lysosomes in the endo-/lysosomal pathway. Together, these findings show that HSPA5 is a novel PEDV potential target for the creation of therapeutic drugs. IMPORTANCE PEDV infection causes severe piglet mortality and threatens the global pig industry. However, the complex invasion mechanism of PEDV makes its prevention and control difficult. Here, we determined that HSPA5 is a novel target for PEDV which interacts with its S protein and is involved in viral attachment and internalization, influencing its transport via the endo-/lysosomal pathway. Our work extends knowledge about the relationship between the PEDV S and host proteins and provides a new therapeutic target against PEDV infection.
Assuntos
Infecções por Coronavirus , Chaperona BiP do Retículo Endoplasmático , Vírus da Diarreia Epidêmica Suína , Glicoproteína da Espícula de Coronavírus , Doenças dos Suínos , Internalização do Vírus , Animais , Chlorocebus aethiops , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/virologia , Lisossomos/metabolismo , Lisossomos/virologia , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Suínos , Doenças dos Suínos/fisiopatologia , Doenças dos Suínos/virologia , Células Vero , Chaperona BiP do Retículo Endoplasmático/genética , Chaperona BiP do Retículo Endoplasmático/metabolismo , Ligação Viral , Endocitose/genéticaRESUMO
IMPORTANCE: Duck Tembusu virus (DTMUV) is an emerging pathogenic flavivirus that replicates well in mosquito, bird, and mammalian cells. An in vivo study revealed that BALB/c mice and Kunming mice were susceptible to DTMUV after intracerebral inoculation. Moreover, there are no reports about DTMUV-related human disease, but antibodies against DTMUV and viral RNA were detected in the serum samples of duck industry workers. This information implies that DTMUV has expanded its host range and poses a threat to mammalian health. Thus, understanding the pathogenic mechanism of DTMUV is crucial for identifying potential antiviral targets. In this study, we discovered that NS3 can induce the mitochondria-mediated apoptotic pathway through the PERK/PKR pathway; it can also interact with voltage-dependent anion channel 2 to induce apoptosis. Our findings provide a theoretical basis for understanding the pathogenic mechanism of DTMUV infection and identifying potential antiviral targets and may also serve as a reference for exploring the pathogenesis of other flaviviruses.
Assuntos
Apoptose , Patos , Infecções por Flavivirus , Flavivirus , Especificidade de Hospedeiro , Animais , Humanos , Antivirais/farmacologia , Patos/virologia , eIF-2 Quinase/metabolismo , Flavivirus/enzimologia , Flavivirus/patogenicidade , Infecções por Flavivirus/diagnóstico , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/transmissão , Infecções por Flavivirus/virologia , Mitocôndrias/metabolismo , Terapia de Alvo Molecular/tendências , Zoonoses Virais/diagnóstico , Zoonoses Virais/imunologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Canal de Ânion 2 Dependente de Voltagem/metabolismoRESUMO
Duck plague virus (DPV) is a high-morbidity fowl alphaherpesvirus that causes septicemic lesions in various organs. Most DPV genes are conserved among herpesviruses, while a few are specific to fowl herpesviruses, including the LORF3 gene, for which there is currently no literature describing its biological properties and functions. This study first addressed whether the LORF3 protein is expressed by making specific polyclonal antibodies. We could demonstrate that DPV LORF3 is an early gene and encodes a protein involved in virion assembly, mainly localized in the nucleus of DPV-infected DEF cells. To investigate the role of this novel LORF3 protein in DPV pathogenesis, we generated a recombinant virus that lacks expression of the LORF3 protein. Our data revealed that the LORF3 protein is not essential for viral replication but contributes to DPV replication in vitro and in vivo and promotes duck plague disease morbidity and mortality. Interestingly, deletion of the LORF3 protein abolished thymus atrophy in DPV-vaccinated ducks. In conclusion, this study revealed the expression of avian herpesviruses-specific genes and unraveled the role of the early protein LORF3 in the pathogenesis of DPV. IMPORTANCE DPV is a highly lethal alphaherpesvirus that causes duck plague in birds of the order Anseriformes. The virus has caused huge economic losses to the poultry industry due to high morbidity and mortality and the cost of vaccination. DPV encodes 78 open reading frames (ORFs), and these genes are involved in various processes of the viral life cycle. Functional characterization of DPV genes is important for understanding the complex viral life cycle and DPV pathogenesis. Here, we identified a novel protein encoded by LORF3, and our data suggest that the LORF3 protein is involved in the occurrence and development of duck plague.
Assuntos
Alphaherpesvirinae , Infecções por Herpesviridae , Animais , Alphaherpesvirinae/genética , Alphaherpesvirinae/metabolismo , Alphaherpesvirinae/patogenicidade , Patos , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Células CultivadasRESUMO
Many RING domain E3 ubiquitin ligases play critical roles in fine-tuning the innate immune response, yet little is known about their regulatory role in flavivirus-induced innate immunity. In previous studies, we found that the suppressor of cytokine signaling 1 (SOCS1) protein mainly undergoes lysine 48 (K48)-linked ubiquitination. However, the E3 ubiquitin ligase that promotes the K48-linked ubiquitination of SOCS1 is unknown. In the present study, we found that RING finger protein 123 (RNF123) binds to the SH2 domain of SOCS1 through its RING domain and facilitates the K48-linked ubiquitination of the K114 and K137 residues of SOCS1. Further studies found that RNF123 promoted the proteasomal degradation of SOCS1 and promoted Toll-like receptor 3 (TLR3)- and interferon (IFN) regulatory factor 7 (IRF7)-mediated type I IFN production during duck Tembusu virus (DTMUV) infection through SOCS1, ultimately inhibiting DTMUV replication. Overall, these findings demonstrate a novel mechanism by which RNF123 regulates type I IFN signaling during DTMUV infection by targeting SOCS1 degradation. IMPORTANCE In recent years, posttranslational modification (PTM) has gradually become a research hot spot in the field of innate immunity regulation, and ubiquitination is one of the critical PTMs. DTMUV has seriously endangered the development of the waterfowl industry in Southeast Asian countries since its outbreak in 2009. Previous studies have shown that SOCS1 is modified by K48-linked ubiquitination during DTMUV infection, but E3 ubiquitin ligase catalyzing the ubiquitination of SOCS1 has not been reported. Here, we identify for the first time that RNF123 acts as an E3 ubiquitin ligase that regulates TLR3- and IRF7-induced type I IFN signaling during DTMUV infection by targeting the K48-linked ubiquitination of the K114 and K137 residues of SOCS1 and the proteasomal degradation of SOCS1.
Assuntos
Infecções por Flavivirus , Flavivirus , Interferon Tipo I , Proteína 1 Supressora da Sinalização de Citocina , Animais , Patos , Flavivirus/fisiologia , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Receptor 3 Toll-Like/metabolismo , Ubiquitina-Proteína Ligases/imunologia , Ubiquitinação , Proteína 1 Supressora da Sinalização de Citocina/imunologia , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/virologia , Ligação Proteica , Domínios Proteicos/imunologia , Replicação Viral , Células HEK293 , Embrião de Mamíferos , HumanosRESUMO
Manganese (Mn) is an essential element for bacteria, but the overload of manganese is toxic. In a previous study, we showed that the cation diffusion facilitator protein MetA and the resistance-nodulation-division efflux pump MetB are responsible for Mn efflux in the bacterial pathogen Riemerella anatipestifer CH-1. However, whether this bacterium encodes additional manganese efflux proteins is unclear. In this study, we show that R. anatipestifer CH-1 encodes a tellurium resistance C (TerC) family protein with low similarity to other characterized TerC family proteins. Compared to the wild type (WT), the terC mutant of R. anatipestifer CH-1 (∆terC) is sensitive to Mn(II) intoxication. The ability of TerC to export manganese is higher than that of MetB but lower than that of MetA. Consistently, terC deletion (∆terC) led to intracellular accumulation of Mn2+ under excess manganese conditions. Further study showed that ∆terC was more sensitive than the WT to the oxidant hypoclorite but not to hydrogen peroxide. Mutagenesis studies showed that the mutant at amino acid sites of Glu116 (E116), Asp122 (D122), Glu245 (E245) Asp248 (D248), and Asp254 (D254) may be involved in the ability of TerC to export manganese. The transcription of terC was upregulated under excess manganese and downregulated under iron-limited conditions. However, this was not dependent on the manganese metabolism regulator MetR. In contrast to a strain lacking the manganese efflux pump MetA or MetB, the terC mutant is attenuated in virulence in a duckling model of infection due to increased sensitivity to duck serum. Finally, comparative analysis showed that homologs of TerC are distributed across the bacterial kingdom, suggesting that TerC exerts a conserved manganese efflux function.IMPORTANCERiemerella anatipestifer is a notorious bacterial pathogen of ducks and other birds. In R. anatipestifer, the genes involved in manganese efflux have not been completely identified, although MetA and MetB have been identified as two manganese exporters. Additionally, the function of TerC family proteins in manganese efflux is controversial. Here, we demonstrated that a TerC family protein helps prevent Mn(II) intoxication in R. anatipestifer and that the ability of TerC to export manganese is intermediate compared to that of MetA and MetB. Sequence analysis and mutagenesis studies showed that the conserved key amino sites of TerC are Glu116, Asp122, Glu245, Asp248, and Asp254. The transcription of terC was regulated by manganese excess and iron limitation. Finally, we show that TerC plays a role in the virulence of R. anatipestifer due to the increased sensitivity to duck serum, rather than the increased sensitivity to manganese. Taken together, these results expand our understanding of manganese efflux and the pathogenic mechanisms of R. anatipestifer.
Assuntos
Infecções por Flavobacteriaceae , Doenças das Aves Domésticas , Riemerella , Animais , Virulência/genética , Proteínas de Bactérias/genética , Manganês/metabolismo , Telúrio/metabolismo , Riemerella/genética , Patos/microbiologia , Ferro/metabolismo , Doenças das Aves Domésticas/microbiologia , Infecções por Flavobacteriaceae/microbiologiaRESUMO
The ongoing epidemic of flaviviruses worldwide has underscored the importance of studying flavivirus vector competence, considering their close association with mosquito vectors. Tembusu virus is an avian-related mosquito-borne flavivirus that has been an epidemic in China and Southeast Asia since 2010. However, the reason for the outbreak of Tembusu virus in 2010 remains unclear, and it is unknown whether changes in vector transmission played an essential role in this process. To address these questions, we conducted a study using Culex quinquefasciatus as a model for Tembusu virus infection, employing both oral infection and microinjection methods. Our findings confirmed that both vertical and venereal transmission collectively contribute to the cycle of Tembusu virus within the mosquito population, with persistent infections observed. Importantly, our data revealed that the prototypical Tembusu virus MM_1775 strain exhibited significantly greater infectivity and transmission rates in mosquitoes than did the duck Tembusu virus (CQW1 strain). Furthermore, we revealed that the viral E protein and 3' untranslated region are key elements responsible for these differences. In conclusion, our study sheds light on mosquito transmission of Tembusu virus and provides valuable insights into the factors influencing its infectivity and transmission rates. These findings contribute to a better understanding of Tembusu virus epidemiology and can potentially aid in the development of strategies to control its spread.
Assuntos
Culex , Infecções por Flavivirus , Flavivirus , Mosquitos Vetores , Animais , Culex/virologia , Flavivirus/fisiologia , Infecções por Flavivirus/veterinária , Infecções por Flavivirus/transmissão , Infecções por Flavivirus/virologia , Mosquitos Vetores/virologia , FemininoRESUMO
Migratory birds are important vectors for virus transmission, how migratory birds recognize viruses and viruses are sustained in birds is still enigmatic. As an animal model for waterfowl among migratory birds, studying and dissecting the antiviral immunity and viral evasion in duck cells may pave a path to deciphering these puzzles. Here, we studied the mechanism of antiviral autophagy mediated by duck STING in DEF cells. The results collaborated that duck STING could significantly enhance LC3B-II/I turnover, LC3B-EGFP puncta formation, and mCherry/EGFP ratio, indicating that duck STING could induce autophagy. The autophagy induced by duck STING is not affected by shRNA knockdown of ATG5 expression, deletion of the C-terminal tail of STING, or TBK1 inhibitor BX795 treatment, indicating that duck STING activated non-classical selective autophagy is independent of interaction with TBK1, TBK1 phosphorylation, and interferon (IFN) signaling. The STING R235A mutant and Sar1A/B kinase mutant abolished duck STING induced autophagy, suggesting binding with cGAMP and COPII complex mediated transport are the critical prerequisite. Duck STING interacted with LC3B through LIR motifs to induce autophagy, the LIR 4/7 motif mutants of duck STING abolished the interaction with LC3B, and neither activated autophagy nor IFN expression, indicating that duck STING associates with LC3B directed autophagy and dictated innate immunity activation. Finally, we found that duck STING mediated autophagy significantly inhibited duck plague virus (DPV) infection via ubiquitously degraded viral proteins. Our study may shed light on one scenario about the control and evasion of diseases transmitted by migratory birds.
Assuntos
Autofagia , Patos , Transdução de Sinais , Animais , Mardivirus/fisiologia , Interferons/metabolismo , Alphaherpesvirinae/fisiologia , Imunidade Inata , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Infecções por Poxviridae/veterinária , Infecções por Poxviridae/imunologia , Infecções por Poxviridae/virologiaRESUMO
The maintenance of viral protein homeostasis depends on the interaction between host cell proteins and viral proteins. As a molecular chaperone, heat shock protein 70 (HSP70) has been shown to play an important role in viral infection. Our results showed that HSP70 can affect translation, replication, assembly, and release during the life cycle of duck hepatitis A virus type 1 (DHAV-1). We demonstrated that HSP70 can regulate viral translation by interacting with the DHAV-1 internal ribosome entry site (IRES). In addition, HSP70 interacts with the viral capsid proteins VP1 and VP3 and promotes their stability by inhibiting proteasomal degradation, thereby facilitating the assembly of DHAV-1 virions. This study demonstrates the specific role of HSP70 in regulating DHAV-1 replication, which are helpful for understanding the pathogenesis of DHAV-1 infection and provide additional information about the role of HSP70 in infection by different kinds of picornaviruses, as well as the interaction between picornaviruses and host cells.
Assuntos
Proteínas de Choque Térmico HSP70 , Vírus da Hepatite do Pato , Sítios Internos de Entrada Ribossomal , Replicação Viral , Vírus da Hepatite do Pato/fisiologia , Vírus da Hepatite do Pato/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Animais , Proteínas Estruturais Virais/metabolismo , Proteínas Estruturais Virais/genética , Patos , Doenças das Aves Domésticas/virologia , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/virologia , Infecções por Picornaviridae/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Hepatite Viral Animal/virologia , Hepatite Viral Animal/metabolismo , Biossíntese de ProteínasRESUMO
Duck plague virus (DPV) causes the highly pathogenic duck plague, and the envelope glycoprotein I (gI), as one of the key virulence genes, has not yet had its critical virulence sites identified through screening. This study used reverse genetics technology to target the gI, specifically within the DPV genome. Four DPV mutants with gI N-glycosylation site mutations were designed and constructed, and these mutant strains were successfully rescued. Our results confirmed that three asparagine residues of gI (N69, N78, and N265) are N-glycosylation sites, and western blot analysis substantiated that glycosylation at each predicted N-glycosylation site was compromised. The deglycosylation of gI leads to the protein misfolding and subsequent retention in the endoplasmic reticulum (ER). The subsequent deglycosylated gI is carried into the Golgi apparatus (GM130) in the interaction of gE. Compared to the parental virus, the mutated virus shows a 66.3% reduction in intercellular transmission capability. In ducks, the deglycosylation of gI significantly reduces DPV replication in vivo, thereby weakening the virulence of DPV. This study represents the first successful creation of a weak DPV virus strain by specific mutation at the N-glycosylation site. The findings provide a foundational understanding of DPV pathogenesis and form the basis for developing live attenuated vaccines against the disease.
Assuntos
Patos , Mardivirus , Doenças das Aves Domésticas , Proteínas do Envelope Viral , Animais , Glicosilação , Virulência , Doenças das Aves Domésticas/virologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Mardivirus/genética , Mardivirus/patogenicidade , Mardivirus/fisiologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologiaRESUMO
During the replication process, the herpesvirus genome forms the head-to-tail linked concatemeric genome, which is then cleaved and packaged into the capsid. The cleavage and packing process is carried out by the terminase complex, which specifically recognizes and cleaves the concatemeric genome. This process is governed by a cis-acting sequence in the genome, named the a sequence. The a sequence and genome cleavage have been described in some herpesviruses, but it remains unclear in duck plague virus. In this study, we analysed the location, composition, and conservation of a sequence in the duck plague virus genome. The structure of the DPV genome has an a sequence of (DR4)m-(DR2)n-pac1-S termini (32 bp)-L termini (32 bp)-pac2, and the length is 841 bp. Direct repeat (DR) sequences are conserved in different DPV strains, but the number of DR copies is inconsistent. Additionally, the typical DR1 sequence was not found in the DPV a sequence. The Pac1 and pac2 motifs are relatively conserved between DPV and other herpesviruses. Cleavage of the DPV concatemeric genome was detected, and the results showed that the DPV genome can form a concatemer and is cleaved into a monomer at a specific site. We also established a sensitive method, TaqMan dual qRTâPCR, to analyse genome cleavage. The ratio of concatemer to total viral genome was decreased during the replication process. These results will be critical for understanding the process of DPV genome cleavage, and the application of TaqMan dual qRTâPCR will greatly facilitate more in-depth research.
Assuntos
Patos , Herpesviridae , Animais , Patos/genética , DNA Viral/química , Sequência de Bases , Sequências Repetitivas de Ácido Nucleico , Herpesviridae/genética , Genoma ViralRESUMO
Duck hepatitis A virus type 1 (DHAV-1) is an important member of the Picornaviridae family that causes highly fatal hepatitis in ducklings. Since picornaviruses have small genomes with limited coding capacity, they must utilize host proteins for viral cap-independent translation and RNA replication. Here, we report the role of duck poly(rC)-binding protein 2 (PCBP2) in regulating the replication and translation of DHAV-1. During DHAV-1 infection, PCBP2 expression was upregulated. A biotinylated RNA pull-down assay revealed that PCBP2 positively regulates DHAV-1 translation through specific interactions with structural domains II and III of the DHAV-1 internal ribosome entry site (IRES). Further studies revealed that PCBP2 promotes DHAV-1 replication via an interaction of its KH1 domain (aa 1-92) with DHAV-1 3Dpol. Thus, our studies demonstrated the specific role of PCBP2 in regulating DHAV-1 translation and replication, revealing a novel mechanism by which hostâvirus interactions regulate viral translation and replication. These findings contribute to further understanding of the pathogenesis of picornavirus infections.
Assuntos
Patos , Vírus da Hepatite do Pato , Infecções por Picornaviridae , Doenças das Aves Domésticas , Proteínas de Ligação a RNA , Replicação Viral , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Vírus da Hepatite do Pato/fisiologia , Vírus da Hepatite do Pato/genética , Doenças das Aves Domésticas/virologia , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/virologia , Hepatite Viral Animal/virologia , Biossíntese de ProteínasRESUMO
BACKGROUND: The COVID-19 pandemic is a persistent global threat to public health. As for the emerging variants of SARS-CoV-2, it is necessary to develop vaccines that can induce broader immune responses, particularly vaccines with weak cellular immunity. METHODS: In this study, we generated a double-layered N-S1 protein nanoparticle (N-S1 PNp) that was formed by desolvating N protein into a protein nanoparticle as the core and crosslinking S1 protein onto the core surface against SARS-CoV-2. RESULTS: Vaccination with N-S1 PNp elicited robust humoral and vigorous cellular immune responses specific to SARS-CoV-2 in mice. Compared to soluble protein groups, the N-S1 PNp induced a higher level of humoral response, as evidenced by the ability of S1-specific antibodies to block hACE2 receptor binding and neutralize pseudovirus. Critically, N-S1 PNp induced Th1-biased, long-lasting, and cross-neutralizing antibodies, which neutralized the variants of SARS-CoV-2 with minimal loss of activity. N-S1 PNp induced strong responses of CD4+ and CD8+ T cells, mDCs, Tfh cells, and GCs B cells in spleens. CONCLUSIONS: These results demonstrate that N-S1 PNp vaccination is a practical approach for promoting protection, which has the potential to counteract the waning immune responses against SARS-CoV-2 variants and confer broad efficacy against future new variants. This study provides a new idea for the design of next-generation SARS-CoV-2 vaccines based on the B and T cells response coordination.
Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos , Formação de Anticorpos , Vacinas contra COVID-19 , Pandemias , COVID-19/prevenção & controle , Imunização , Vacinação , Anticorpos Antivirais , Anticorpos NeutralizantesRESUMO
The prevalence of avian-derived Escherichia coli (E. coli) carrying mcr-1 poses a significant threat to the development of the poultry industry and public health safety. Despite ongoing in-depth epidemiological research worldwide, a comprehensive macroscopic study based on genomics is still lacking. In response, this study collected 1104 genomic sequences of avian-derived mcr-1-positive E. coli (MCRPEC) from the NCBI public database, covering 31 countries. The majority of sequences originated from China (48.82â¯%), followed by the Netherlands (10.41â¯%). In terms of avian hosts, chicken accounted for the largest proportion (44.11â¯%), followed by gallus (24.09â¯%). Avian-derived MCRPEC also serves as a reservoir for other antibiotic resistance genes (ARGs), with 179 ARGs coexisting with mcr-1 identified. A total of 206 virulence-associated genes were also identified, revealing the pathogenic risks of MCRPEC. Pan-genome analysis revealed that avian-derived MCRPEC from different hosts, countries of origin, and serotypes exhibit minor SNP differences, indicating a high risk of cross-regional and cross-host transmission. The ST types of MCRPRC are diverse, with ST10 being the most prevalent (n=70). Spearman analysis showed a significant correlation between the number of ARGs and the insertion sequences (ISs) as well as plasmid replicon in ST10 strains. Furthermore, ST10 strains share a similar genetic basis with human-derived MCRPEC, suggesting the possibility of clonal dissemination. Pan-genome-wide association studies (pan-GWAS) indicated that the differential genes of MCRPEC from different countries and host sources are significantly different, mainly related to genes encoding type IV secretion systems and mobile genetic elements (MGEs). Plasmid mapping of showed that the prevalent plasmid types vary by country and host, with IncI2 and IncX4 being the main mcr-1-positive plasmids. Among the 12 identified mcr-1 genetic contexts with ISs, the Tn6330 transposon was the predominant carrier of mcr-1. In summary, the potential threat of avian-derived MCRPEC cannot be ignored, and long-term and comprehensive monitoring are essential.
Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Animais , Proteínas de Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Galinhas/microbiologia , Genômica , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Genoma Bacteriano , Aves/microbiologia , Doenças das Aves Domésticas/microbiologia , Plasmídeos/genéticaRESUMO
Unlike most flaviviruses transmitted by arthropods, Tembusu virus (TMUV) is still active during winter and causes outbreaks in some areas, indicating vector-independent spread of the virus. Gastrointestinal transmission might be one of the possible routes of vector-free transmission, which also means that the virus has to interact with more intestinal bacteria. Here, we found evidence that TMUV indeed can transmit through the digestive tract. Interestingly, using an established TMUV disease model by oral gavage combined with an antibiotic treatment, we revealed that a decrease in intestinal bacteria significantly reduced local TMUV proliferation in the intestine, revealing that the bacterial microbiome is important in TMUV infection. We found that lipopolysaccharide (LPS) present in the outer membrane of Gram-negative bacteria enhanced TMUV proliferation by promoting its attachment. Toll-like receptor 4 (TLR4), a cell surface receptor, can transmit signal from LPS. We confirmed colocalization of TLR4 with TMUV envelope (E) protein as well as their interaction in infected cells. Coherently, TMUV infection of susceptible cells was inhibited by an anti-TLR4 antibody, purified soluble TLR4 protein, and knockdown of TLR4 expression. LPS-enhanced TMUV proliferation could also be blocked by a TLR4 inhibitor. Meanwhile, pretreatment of duck primary cells with TMUV significantly impaired LPS-induced interleukin 6 production. Collectively, our study provides first insights into vector-free transmission mechanisms of flaviviruses.
Assuntos
Infecções por Flavivirus , Microbioma Gastrointestinal , Doenças das Aves Domésticas , Receptor 4 Toll-Like , Infecções por Flavivirus/microbiologia , Infecções por Flavivirus/transmissão , Infecções por Flavivirus/virologia , Lipopolissacarídeos/metabolismo , Receptor 4 Toll-Like/metabolismo , Patos , Animais , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/transmissão , Doenças das Aves Domésticas/virologia , Replicação Viral , Técnicas de Silenciamento de Genes , Proteínas de Bactérias/metabolismoRESUMO
Duck Tembusu virus (DTMUV) is an emerging pathogenic flavivirus that mainly causes a decrease in egg production in infected waterfowl. Similar to other members of the Flaviviridae family, it can proliferate in most mammalian cells and may also pose a potential threat to nonavian animals. In previous studies, we found that DTMUV infection can upregulate suppressor of cytokine signaling 1 (SOCS1) to inhibit type I interferon (IFN) production and promote virus replication, but the specific mechanism is unclear. Furthermore, little is known about the regulatory role of ubiquitination during flavivirus infection. In this study, we found that activation of Toll-like receptor 3 (TLR3) signaling rather than type I IFN stimulation led to the upregulation of SOCS1 during DTMUV infection. Further studies revealed that JOSD1 stabilized SOCS1 expression by binding to the SH2 domain of SOCS1 and mediating its deubiquitination. In addition, JOSD1 also inhibited type I IFN production through SOCS1. Finally, SOCS1 acts as an E3 ubiquitin ligase that binds to IFN regulatory factor 7 (IRF7) through its SH2 domain and mediates K48-linked ubiquitination and proteasomal degradation of IRF7, ultimately inhibiting type I IFN production mediated by IRF7 and promoting viral proliferation. These results will enrich and deepen our understanding of the mechanism by which DTMUV antagonizes the host interferon system. IMPORTANCE DTMUV is a newly discovered flavivirus that seriously harms the poultry industry. In recent years, there have been numerous studies on the involvement of ubiquitination in the regulation of innate immunity. However, little is known about the involvement of ubiquitination in the regulation of flavivirus-induced type I IFN signaling. In this study, we found that SOCS1 was induced by TLR3 signaling during DTMUV infection. Furthermore, we found for the first time that duck SOCS1 protein was also modified by K48-linked polyubiquitination, whereas our previous study found that SOCS1 was upregulated during DTMUV infection. Further studies showed that JOSD1 stabilized SOCS1 expression by mediating the deubiquitination of SOCS1. While SOCS1 acts as a negative regulator of cytokines, we found that DTMUV utilized SOCS1 to mediate the ubiquitination and proteasomal degradation of IRF7 and ultimately inhibit type I IFN production, thereby promoting its proliferation.
Assuntos
Infecções por Flavivirus , Flavivirus , Interações entre Hospedeiro e Microrganismos , Interferon Tipo I , Doenças das Aves Domésticas , Animais , Patos , Endopeptidases/genética , Endopeptidases/metabolismo , Retroalimentação Fisiológica , Flavivirus/metabolismo , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/virologia , Interações entre Hospedeiro e Microrganismos/imunologia , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Receptor 3 Toll-Like/metabolismo , Ubiquitina-Proteína Ligases , Regulação para CimaRESUMO
In bacteria, manganese homeostasis is controlled by import, regulation, and efflux. Here, we identified 2 Mn exporters, MetA and MetB (manganese efflux transporters A and B), in Riemerella anatipestifer CH-1, encoding a putative cation diffusion facilitator (CDF) protein and putative resistance-nodulation-division (RND) efflux pump, respectively. Compared with the wild type (WT), ΔmetA, ΔmetB, and ΔmetAΔmetB exhibited sensitivity to manganese, since they accumulated more intracellular Mn2+ than the WT under excess manganese conditions, while the amount of iron in the mutants was decreased. Moreover, ΔmetA, ΔmetB, and ΔmetAΔmetB were more sensitive to the oxidant NaOCl than the WT. Further study showed that supplementation with iron sources could alleviate manganese toxicity and that excess manganese inhibited bacterial cell division. RNA-Seq showed that manganese stress resulted in the perturbation of iron metabolism genes, further demonstrating that manganese efflux is critical for iron homeostasis. metA transcription was upregulated under excess manganese but was not activated by MetR, a DtxR family protein, although MetR was also involved in manganese detoxification, while metB transcription was downregulated under iron depletion conditions and in fur mutants. Finally, homologues of MetA and MetB were found to be mainly distributed in members of Flavobacteriaceae. Specifically, MetB represents a novel manganese exporter in Gram-negative bacteria. IMPORTANCE Manganese is required for the function of many proteins in bacteria, but in excess, manganese can mediate toxicity. Therefore, the intracellular levels of manganese must be tightly controlled. Manganese efflux transporters have been characterized in some other bacteria; however, their homologues could not be found in the genome of Riemerella anatipestifer through sequence comparison. This indicated that other types of manganese efflux transporters likely exist. In this study, we characterized 2 transporters, MetA and MetB, that mediate manganese efflux in R. anatipestifer in response to manganese overload. MetA encodes a putative cation diffusion facilitator (CDF) protein, which has been characterized as a manganese transporter in other bacteria, while this is the first observation of a putative resistance-nodulation-division (RND) transporter contributing to manganese export in Gram-negative bacteria. In addition, the mechanism of manganese toxicity was studied by observing morphological changes and by transcriptome sequencing. Taken together, these results are important for expanding our understanding of manganese transporters and revealing the mechanism of manganese toxicity.