Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(2): 631-640, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30578319

RESUMO

A hallmark of prostate cancer progression is dysregulation of lipid metabolism via overexpression of fatty acid synthase (FASN), a key enzyme in de novo fatty acid synthesis. Metastatic castration-resistant prostate cancer (mCRPC) develops resistance to inhibitors of androgen receptor (AR) signaling through a variety of mechanisms, including the emergence of the constitutively active AR variant V7 (AR-V7). Here, we developed an FASN inhibitor (IPI-9119) and demonstrated that selective FASN inhibition antagonizes CRPC growth through metabolic reprogramming and results in reduced protein expression and transcriptional activity of both full-length AR (AR-FL) and AR-V7. Activation of the reticulum endoplasmic stress response resulting in reduced protein synthesis was involved in IPI-9119-mediated inhibition of the AR pathway. In vivo, IPI-9119 reduced growth of AR-V7-driven CRPC xenografts and human mCRPC-derived organoids and enhanced the efficacy of enzalutamide in CRPC cells. In human mCRPC, both FASN and AR-FL were detected in 87% of metastases. AR-V7 was found in 39% of bone metastases and consistently coexpressed with FASN. In patients treated with enzalutamide and/or abiraterone FASN/AR-V7 double-positive metastases were found in 77% of cases. These findings provide a compelling rationale for the use of FASN inhibitors in mCRPCs, including those overexpressing AR-V7.


Assuntos
Lipogênese , Proteínas de Neoplasias/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Humanos , Masculino , Camundongos , Metástase Neoplásica , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cancer Res ; 84(11): 1834-1855, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831751

RESUMO

Cancer cells exhibit metabolic plasticity to meet oncogene-driven dependencies while coping with nutrient availability. A better understanding of how systemic metabolism impacts the accumulation of metabolites that reprogram the tumor microenvironment (TME) and drive cancer could facilitate development of precision nutrition approaches. Using the Hi-MYC prostate cancer mouse model, we demonstrated that an obesogenic high-fat diet (HFD) rich in saturated fats accelerates the development of c-MYC-driven invasive prostate cancer through metabolic rewiring. Although c-MYC modulated key metabolic pathways, interaction with an obesogenic HFD was necessary to induce glycolysis and lactate accumulation in tumors. These metabolic changes were associated with augmented infiltration of CD206+ and PD-L1+ tumor-associated macrophages (TAM) and FOXP3+ regulatory T cells, as well as with the activation of transcriptional programs linked to disease progression and therapy resistance. Lactate itself also stimulated neoangiogenesis and prostate cancer cell migration, which were significantly reduced following treatment with the lactate dehydrogenase inhibitor FX11. In patients with prostate cancer, high saturated fat intake and increased body mass index were associated with tumor glycolytic features that promote the infiltration of M2-like TAMs. Finally, upregulation of lactate dehydrogenase, indicative of a lactagenic phenotype, was associated with a shorter time to biochemical recurrence in independent clinical cohorts. This work identifies cooperation between genetic drivers and systemic metabolism to hijack the TME and promote prostate cancer progression through oncometabolite accumulation. This sets the stage for the assessment of lactate as a prognostic biomarker and supports strategies of dietary intervention and direct lactagenesis blockade in treating advanced prostate cancer. SIGNIFICANCE: Lactate accumulation driven by high-fat diet and MYC reprograms the tumor microenvironment and promotes prostate cancer progression, supporting the potential of lactate as a biomarker and therapeutic target in prostate cancer. See related commentary by Frigo, p. 1742.


Assuntos
Dieta Hiperlipídica , Ácido Láctico , Obesidade , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-myc , Microambiente Tumoral , Masculino , Animais , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos , Humanos , Ácido Láctico/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Obesidade/metabolismo , Obesidade/patologia , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Macrófagos Associados a Tumor/metabolismo
3.
Cancers (Basel) ; 15(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37444583

RESUMO

Advanced prostate cancer represents the fifth leading cause of cancer death in men worldwide. Although androgen-receptor signaling is the major driver of the disease, evidence is accumulating that disease progression is supported by substantial metabolic changes. Alterations in de novo lipogenesis and fatty acid catabolism are consistently reported during prostate cancer development and progression in association with androgen-receptor signaling. Therefore, the term "lipogenic phenotype" is frequently used to describe the complex metabolic rewiring that occurs in prostate cancer. However, a new scenario has emerged in which lactate may play a major role. Alterations in oncogenes/tumor suppressors, androgen signaling, hypoxic conditions, and cells in the tumor microenvironment can promote aerobic glycolysis in prostate cancer cells and the release of lactate in the tumor microenvironment, favoring immune evasion and metastasis. As prostate cancer is composed of metabolically heterogenous cells, glycolytic prostate cancer cells or cancer-associated fibroblasts can also secrete lactate and create "symbiotic" interactions with oxidative prostate cancer cells via lactate shuttling to sustain disease progression. Here, we discuss the multifaceted role of lactate in prostate cancer progression, taking into account the influence of the systemic metabolic and gut microbiota. We call special attention to the clinical opportunities of imaging lactate accumulation for patient stratification and targeting lactate metabolism.

4.
Elife ; 122023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552050

RESUMO

Loss-of-function genetic tools are widely applied for validating therapeutic targets, but their utility remains limited by incomplete on- and uncontrolled off-target effects. We describe artificial RNA interference (ARTi) based on synthetic, ultra-potent, off-target-free shRNAs that enable efficient and inducible suppression of any gene upon introduction of a synthetic target sequence into non-coding transcript regions. ARTi establishes a scalable loss-of-function tool with full control over on- and off-target effects.


Assuntos
Interferência de RNA , RNA Interferente Pequeno/genética
5.
Sci Rep ; 12(1): 15334, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097280

RESUMO

Head and neck cancer etiology and architecture is quite diverse and complex, impeding the prediction whether a patient could respond to a particular cancer immunotherapy or combination treatment. A concomitantly arising caveat is obviously the translation from pre-clinical, cell based in vitro systems as well as syngeneic murine tumor models towards the heterogeneous architecture of the human tumor ecosystems. To bridge this gap, we have established and employed a patient-derived HNSCC (head and neck squamous cell carcinoma) slice culturing system to assess immunomodulatory effects as well as permissivity and oncolytic virus (OV) action. The heterogeneous contexture of the human tumor ecosystem including tumor cells, cancer-associated fibroblasts and immune cells was preserved in our HNSCC slice culturing approach. Importantly, the immune cell compartment remained to be functional and cytotoxic T-cells could be activated by immunostimulatory antibodies. In addition, we uncovered that a high proportion of the patient-derived HNSCC slice cultures were susceptible to the OV VSV-GP. More specifically, VSV-GP infects a broad spectrum of tumor-associated lineages including epithelial and stromal cells and can induce apoptosis. In sum, this human tumor ex vivo platform might complement pre-clinical studies to eventually propel cancer immune-related drug discovery and ease the translation to the clinics.


Assuntos
Neoplasias de Cabeça e Pescoço , Vírus Oncolíticos , Animais , Ecossistema , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Imunoterapia , Camundongos , Vírus Oncolíticos/fisiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia
6.
Front Immunol ; 13: 1008764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159851

RESUMO

Colorectal cancer (CRC) is one of the most common cancers worldwide and demands more effective treatments. We sought to identify tumor selective CRC antigens and their therapeutic potential for cytotoxic T-cell targeting by transcriptomic and immunohistochemical analysis. LY6G6D was identified as a tumor selectively expressed CRC antigen, mainly in the microsatellite stable (MSS) subtype. A specific anti LY6G6D/CD3 T cell engager (TcE) was generated and demonstrated potent tumor cell killing and T cell activation in vitro. Ex vivo treatment of primary patient-derived CRC tumor slice cultures with the LY6G6D/CD3 TcE led to IFNγ secretion in LY6G6D positive tumor samples. In vivo, LY6G6D/CD3 TcE monotherapy demonstrated tumor regressions in pre-clinical mouse models of engrafted human CRC tumor cells and PBMCs. Lastly, 2D and 3D cocultures of LY6G6D positive and negative cells were used to explore the bystander killing of LY6G6D negative cells after specific activation of T cells by LY6G6D positive cells. LY6G6D/CD3 TcE treatment was shown to lyse target negative cells in the vicinity of target positive cells through a combined effect of IFNγ, TNFα and Fas/FasL. In summary, LY6G6D was identified as a selectively expressed CRC antigen that can be utilized to potently re-direct and activate cytotoxic T-cells to lyse LY6G6D expressing CRC using a TcE. This effect can be spread to target negative neighboring tumor cells, potentially leading to improved therapeutic efficacy.


Assuntos
Neoplasias Colorretais , Fator de Necrose Tumoral alfa , Animais , Antígenos de Neoplasias , Humanos , Imunoglobulinas , Ativação Linfocitária , Camundongos , Linfócitos T Citotóxicos
7.
Nat Commun ; 13(1): 5969, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216795

RESUMO

Targeted protein degradation offers an alternative modality to classical inhibition and holds the promise of addressing previously undruggable targets to provide novel therapeutic options for patients. Heterobifunctional molecules co-recruit a target protein and an E3 ligase, resulting in ubiquitylation and proteosome-dependent degradation of the target. In the clinic, the oral route of administration is the option of choice but has only been achieved so far by CRBN- recruiting bifunctional degrader molecules. We aimed to achieve orally bioavailable molecules that selectively degrade the BAF Chromatin Remodelling complex ATPase SMARCA2 over its closely related paralogue SMARCA4, to allow in vivo evaluation of the synthetic lethality concept of SMARCA2 dependency in SMARCA4-deficient cancers. Here we outline structure- and property-guided approaches that led to orally bioavailable VHL-recruiting degraders. Our tool compound, ACBI2, shows selective degradation of SMARCA2 over SMARCA4 in ex vivo human whole blood assays and in vivo efficacy in SMARCA4-deficient cancer models. This study demonstrates the feasibility for broadening the E3 ligase and physicochemical space that can be utilised for achieving oral efficacy with bifunctional molecules.


Assuntos
Adenosina Trifosfatases , Fatores de Transcrição , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteólise , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
8.
Nat Cancer ; 3(7): 821-836, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35883003

RESUMO

Oncogenic alterations in human epidermal growth factor receptor 2 (HER2) occur in approximately 2% of patients with non-small cell lung cancer and predominantly affect the tyrosine kinase domain and cluster in exon 20 of the ERBB2 gene. Most clinical-grade tyrosine kinase inhibitors are limited by either insufficient selectivity against wild-type (WT) epidermal growth factor receptor (EGFR), which is a major cause of dose-limiting toxicity or by potency against HER2 exon 20 mutant variants. Here we report the discovery of covalent tyrosine kinase inhibitors that potently inhibit HER2 exon 20 mutants while sparing WT EGFR, which reduce tumor cell survival and proliferation in vitro and result in regressions in preclinical xenograft models of HER2 exon 20 mutant non-small cell lung cancer, concomitant with inhibition of downstream HER2 signaling. Our results suggest that HER2 exon 20 insertion-driven tumors can be effectively treated by a potent and highly selective HER2 inhibitor while sparing WT EGFR, paving the way for clinical translation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/genética , Éxons/genética , Genes erbB-2 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/genética
9.
Cancer Drug Resist ; 4(1): 143-162, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35582011

RESUMO

Prostate cancer (PCa) is the second leading cause of cancer-related death in the US. Androgen receptor (AR) signaling is the driver of both PCa development and progression and, thus, the major target of current in-use therapies. However, despite the survival benefit of second-generation inhibitors of AR signaling in the metastatic setting, resistance mechanisms inevitably occur. Thus, novel strategies are required to circumvent resistance occurrence and thereby to improve PCa survival. Among the key cellular processes that are regulated by androgens, metabolic reprogramming stands out because of its intricate links with cancer cell biology. In this review, we discuss how cancer metabolism and lipid metabolism in particular are regulated by androgens and contribute to the acquisition of resistance to endocrine therapy. We describe the interplay between genetic alterations, metabolic vulnerabilities and castration resistance. Since PCa cells adapt their metabolism to excess nutrient supply to promote cancer progression, we review our current knowledge on the association between diet/obesity and resistance to anti-androgen therapies. We briefly describe the metabolic symbiosis between PCa cells and tumor microenvironment and how this crosstalk might contribute to PCa progression. We discuss how tackling PCa metabolic vulnerabilities represents a potential approach of synthetic lethality to endocrine therapies. Finally, we describe how the continuous advances in analytical technologies and metabolic imaging have led to the identification of potential new prognostic and predictive biomarkers, and non-invasive approaches to monitor therapy response.

10.
BJUI Compass ; 2(1): 13-23, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35474657

RESUMO

Context: Ductal adenocarcinoma (DAC) is relatively rare, but is nonetheless the second most common subtype of prostate cancer. First described in 1967, opinion is still divided regarding its biology, prognosis, and outcome. Objectives: To systematically interrogate the literature to clarify the epidemiology, diagnosis, management, progression, and survival statistics of DAC. Materials and methods: We conducted a literature search of five medical databases from inception to May 04 2020 according to PRISMA criteria using search terms "prostate ductal adenocarcinoma" OR "endometriod adenocarcinoma of prostate" and variations of each. Results: Some 114 studies were eligible for inclusion, presenting 2 907 170 prostate cancer cases, of which 5911 were DAC. [Correction added on 16 January 2021 after the first online publication: the preceding statement has been corrected in this current version.] DAC accounts for 0.17% of prostate cancer on meta-analysis (range 0.0837%-13.4%). The majority of DAC cases were admixed with predominant acinar adenocarcinoma (AAC). Median Prostate Specific Antigen at diagnosis ranged from 4.2 to 9.6 ng/mL in the case series.DAC was more likely to present as T3 (RR1.71; 95%CI 1.53-1.91) and T4 (RR7.56; 95%CI 5.19-11.01) stages, with far higher likelihood of metastatic disease (RR4.62; 95%CI 3.84-5.56; all P-values < .0001), compared to AAC. Common first treatments included surgery (radical prostatectomy (RP) or cystoprostatectomy for select cases) or radiotherapy (RT) for localized disease, and hormonal or chemo-therapy for metastatic disease. Few studies compared RP and RT modalities, and those that did present mixed findings, although cancer-specific survival rates seem worse after RP.Biochemical recurrence rates were increased with DAC compared to AAC. Additionally, DAC metastasized to unusual sites, including penile and peritoneal metastases. Where compared, all studies reported worse survival for DAC compared to AAC. Conclusion: When drawing conclusions about DAC it is important to note the heterogenous nature of the data. DAC is often diagnosed incidentally post-treatment, perhaps due to lack of a single, universally applied histopathological definition. As such, DAC is likely underreported in clinical practice and the literature. Poorer prognosis and outcomes for DAC compared to AAC merit further research into genetic composition, evolution, diagnosis, and treatment of this surprisingly common prostate cancer sub-type. Patient summary: Ductal prostate cancer is a rare but important form of prostate cancer. This review demonstrates that it tends to be more serious at detection and more likely to spread to unusual parts of the body. Overall survival is worse with this type of prostate cancer and urologists need to be aware of the presence of ductal prostate cancer to alter management decisions and follow-up.

11.
Mol Cancer Ther ; 20(1): 96-108, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33037135

RESUMO

Activation of TRAILR2 has emerged as an important therapeutic concept in cancer treatment. TRAILR2 agonistic molecules have only had limited clinical success, to date, due either to lack of efficacy or hepatotoxicity. BI 905711 is a novel tetravalent bispecific antibody targeting both TRAILR2 and CDH17 and represents a novel liver-sparing TRAILR2 agonist specifically designed to overcome the disadvantages of previous strategies. Here, we show that BI 905711 effectively triggered apoptosis in a broad panel of CDH17-positive colorectal cancer tumor cells in vitro. Efficient induction of apoptosis was dependent on the presence of CDH17, as exemplified by the greater than 1,000-fold drop in potency in CDH17-negative cells. BI 905711 demonstrated single-agent tumor regressions in CDH17-positive colorectal cancer xenografts, an effect that was further enhanced upon combination with irinotecan. Antitumor efficacy correlated with induction of caspase activation, as measured in both the tumor and plasma. Effective tumor growth inhibition was further demonstrated across a series of different colorectal cancer PDX models. BI 905711 induced apoptosis in both a cis (same cell) as well as trans (adjacent cell) fashion, translating into significant antitumor activity even in xenograft models with heterogeneous CDH17 expression. In summary, we demonstrate that BI 905711 has potent and selective antitumor activity in CDH17-positive colorectal cancer models both in vitro and in vivo. The high prevalence of over 95% CDH17-positive tumors in patients with colorectal cancer, the molecule preclinical efficacy together with its potential for a favorable safety profile, support the ongoing BI 905711 phase I trial in colorectal cancer and additional CDH17-positive cancer types (NCT04137289).


Assuntos
Anticorpos Biespecíficos/farmacologia , Apoptose , Caderinas/metabolismo , Neoplasias Colorretais/patologia , Fígado/patologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Humanos , Fígado/efeitos dos fármacos , Camundongos , Metástase Neoplásica , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Indução de Remissão
12.
Cancer Res ; 81(7): 1704-1718, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33547161

RESUMO

The androgen receptor (AR) is the key oncogenic driver of prostate cancer, and despite implementation of novel AR targeting therapies, outcomes for metastatic disease remain dismal. There is an urgent need to better understand androgen-regulated cellular processes to more effectively target the AR dependence of prostate cancer cells through new therapeutic vulnerabilities. Transcriptomic studies have consistently identified lipid metabolism as a hallmark of enhanced AR signaling in prostate cancer, yet the relationship between AR and the lipidome remains undefined. Using mass spectrometry-based lipidomics, this study reveals increased fatty acyl chain length in phospholipids from prostate cancer cells and patient-derived explants as one of the most striking androgen-regulated changes to lipid metabolism. Potent and direct AR-mediated induction of ELOVL fatty acid elongase 5 (ELOVL5), an enzyme that catalyzes fatty acid elongation, was demonstrated in prostate cancer cells, xenografts, and clinical tumors. Assessment of mRNA and protein in large-scale data sets revealed ELOVL5 as the predominant ELOVL expressed and upregulated in prostate cancer compared with nonmalignant prostate. ELOVL5 depletion markedly altered mitochondrial morphology and function, leading to excess generation of reactive oxygen species and resulting in suppression of prostate cancer cell proliferation, 3D growth, and in vivo tumor growth and metastasis. Supplementation with the monounsaturated fatty acid cis-vaccenic acid, a direct product of ELOVL5 elongation, reversed the oxidative stress and associated cell proliferation and migration effects of ELOVL5 knockdown. Collectively, these results identify lipid elongation as a protumorigenic metabolic pathway in prostate cancer that is androgen-regulated, critical for metastasis, and targetable via ELOVL5. SIGNIFICANCE: This study identifies phospholipid elongation as a new metabolic target of androgen action that is critical for prostate tumor metastasis.


Assuntos
Elongases de Ácidos Graxos/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , RNA Interferente Pequeno/uso terapêutico , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/fisiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Terapia de Alvo Molecular/métodos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Interferente Pequeno/farmacologia , Receptores Androgênicos/fisiologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Mol Cancer Res ; 17(5): 1155-1165, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30745465

RESUMO

Diagnosis of prostate cancer is based on histologic evaluation of tumor architecture using a system known as the "Gleason score." This diagnostic paradigm, while the standard of care, is time-consuming, shows intraobserver variability, and provides no information about the altered metabolic pathways, which result in altered tissue architecture. Characterization of the molecular composition of prostate cancer and how it changes with respect to the Gleason score (GS) could enable a more objective and faster diagnosis. It may also aid in our understanding of disease onset and progression. In this work, we present mass spectrometry imaging for identification and mapping of lipids and metabolites in prostate tissue from patients with known prostate cancer with GS from 6 to 9. A gradient of changes in the intensity of various lipids was observed, which correlated with increasing GS. Interestingly, these changes were identified in both regions of high tumor cell density, and in regions of tissue that appeared histologically benign, possibly suggestive of precancerous metabolomic changes. A total of 31 lipids, including several phosphatidylcholines, phosphatidic acids, phosphatidylserines, phosphatidylinositols, and cardiolipins were detected with higher intensity in GS (4+3) compared with GS (3+4), suggesting they may be markers of prostate cancer aggression. Results obtained through mass spectrometry imaging studies were subsequently correlated with a fast, ambient mass spectrometry method for potential use as a clinical tool to support image-guided prostate biopsy. IMPLICATIONS: In this study, we suggest that metabolomic differences between prostate cancers with different Gleason scores can be detected by mass spectrometry imaging.


Assuntos
Biomarcadores Tumorais/metabolismo , Metabolômica/métodos , Neoplasias da Próstata/patologia , Progressão da Doença , Humanos , Biópsia Guiada por Imagem , Lipidômica/métodos , Masculino , Espectrometria de Massas , Gradação de Tumores , Prostatectomia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA