Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Cell ; 187(2): 312-330.e22, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38157854

RESUMO

The FERONIA (FER)-LLG1 co-receptor and its peptide ligand RALF regulate myriad processes for plant growth and survival. Focusing on signal-induced cell surface responses, we discovered that intrinsically disordered RALF triggers clustering and endocytosis of its cognate receptors and FER- and LLG1-dependent endocytosis of non-cognate regulators of diverse processes, thus capable of broadly impacting downstream responses. RALF, however, remains extracellular. We demonstrate that RALF binds the cell wall polysaccharide pectin. They phase separate and recruit FER and LLG1 into pectin-RALF-FER-LLG1 condensates to initiate RALF-triggered cell surface responses. We show further that two frequently encountered environmental challenges, elevated salt and temperature, trigger RALF-pectin phase separation, promiscuous receptor clustering and massive endocytosis, and that this process is crucial for recovery from stress-induced growth attenuation. Our results support that RALF-pectin phase separation mediates an exoskeletal mechanism to broadly activate FER-LLG1-dependent cell surface responses to mediate the global role of FER in plant growth and survival.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fosfotransferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pectinas/metabolismo , Separação de Fases , Proteínas Ligadas por GPI/metabolismo
2.
Nature ; 614(7947): 303-308, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36697825

RESUMO

Flowering plants have evolved numerous intraspecific and interspecific prezygotic reproductive barriers to prevent production of unfavourable offspring1. Within a species, self-incompatibility (SI) is a widely utilized mechanism that rejects self-pollen2,3 to avoid inbreeding depression. Interspecific barriers restrain breeding between species and often follow the SI × self-compatible (SC) rule, that is, interspecific pollen is unilaterally incompatible (UI) on SI pistils but unilaterally compatible (UC) on SC pistils1,4-6. The molecular mechanisms underlying SI, UI, SC and UC and their interconnections in the Brassicaceae remain unclear. Here we demonstrate that the SI pollen determinant S-locus cysteine-rich protein/S-locus protein 11 (SCR/SP11)2,3 or a signal from UI pollen binds to the SI female determinant S-locus receptor kinase (SRK)2,3, recruits FERONIA (FER)7-9 and activates FER-mediated reactive oxygen species production in SI stigmas10,11 to reject incompatible pollen. For compatible responses, diverged pollen coat protein B-class12-14 from SC and UC pollen differentially trigger nitric oxide, nitrosate FER to suppress reactive oxygen species in SC stigmas to facilitate pollen growth in an intraspecies-preferential manner, maintaining species integrity. Our results show that SRK and FER integrate mechanisms underlying intraspecific and interspecific barriers and offer paths to achieve distant breeding in Brassicaceae crops.


Assuntos
Brassicaceae , Flores , Hibridização Genética , Proteínas de Plantas , Polinização , Brassicaceae/genética , Brassicaceae/metabolismo , Depressão por Endogamia , Óxido Nítrico/metabolismo , Fosfotransferases/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie , Flores/metabolismo , Autofertilização
3.
Plant Cell ; 35(1): 453-468, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36190337

RESUMO

RAC/Rho of plant (ROP) GTPases are major molecular switches that control diverse signaling cascades for plant growth, development, and defense. Here, we discovered a signaling node that connects RAC/ROPs to cytokinins. Rice (Oryza sativa) plants develop a fibrous root system mainly composed of crown roots. Cytokinin signaling via a phosphorelay system is critical for crown root development. We show that OsRopGEF10, which activates RAC/ROPs, acts upstream of the cytoplasmic-nuclear shuttling phosphotransfer proteins AHPs of the cytokinin signaling pathway to promote crown root development. Mutations of OsRopGEF10 induced hypersensitivity to cytokinin, whereas overexpressing this gene reduced the cytokinin response. Loss of OsRopGEF10 function reduced the expression of the response regulator gene OsRR6, a repressor of cytokinin signaling, and impaired crown root development. Mutations in OsAHP1/2 led to increased crown root production and rescued the crown root defect of Osropgef10. Furthermore, auxin activates the ROP GTPase OsRAC3, which attenuates cytokinin signaling for crown root initiation. Molecular interactions between OsRopGEF10, OsRAC3, and OsAHP1/2 implicate a mechanism whereby OsRopGEF10-activated OsRAC3 recruits OsAHP1/2 to the cortical cytoplasm, sequestering them from their phosphorelay function in the nucleus. Together, our findings uncover the OsRopGEF10-OsRAC3-OsAHP1/2 signaling module, establish a link between RAC/ROPs and cytokinin, and reveal molecular crosstalk between auxin and cytokinin during crown root development.


Assuntos
Oryza , Oryza/metabolismo , Ativadores de GTP Fosfo-Hidrolase/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Nature ; 579(7800): 561-566, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32214247

RESUMO

Species that propagate by sexual reproduction actively guard against the fertilization of an egg by multiple sperm (polyspermy). Flowering plants rely on pollen tubes to transport their immotile sperm to fertilize the female gametophytes inside ovules. In Arabidopsis, pollen tubes are guided by cysteine-rich chemoattractants to target the female gametophyte1,2. The FERONIA receptor kinase has a dual role in ensuring sperm delivery and blocking polyspermy3. It has previously been reported that FERONIA generates a female gametophyte environment that is required for sperm release4. Here we show that FERONIA controls several functionally linked conditions to prevent the penetration of female gametophytes by multiple pollen tubes in Arabidopsis. We demonstrate that FERONIA is crucial for maintaining de-esterified pectin at the filiform apparatus, a region of the cell wall at the entrance to the female gametophyte. Pollen tube arrival at the ovule triggers the accumulation of nitric oxide at the filiform apparatus in a process that is dependent on FERONIA and mediated by de-esterified pectin. Nitric oxide nitrosates both precursor and mature forms of the chemoattractant LURE11, respectively blocking its secretion and interaction with its receptor, to suppress pollen tube attraction. Our results elucidate a mechanism controlled by FERONIA in which the arrival of the first pollen tube alters ovular conditions to disengage pollen tube attraction and prevent the approach and penetration of the female gametophyte by late-arriving pollen tubes, thus averting polyspermy.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Fertilização , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Óxido Nítrico/metabolismo , Óvulo Vegetal/metabolismo , Pectinas/metabolismo , Fosfotransferases/metabolismo , Tubo Polínico/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Óvulo Vegetal/citologia , Pectinas/química , Tubo Polínico/citologia
5.
Plant Cell ; 34(1): 53-71, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34524464

RESUMO

The field of plant cell biology has a rich history of discovery, going back to Robert Hooke's discovery of cells themselves. The development of microscopes and preparation techniques has allowed for the visualization of subcellular structures, and the use of protein biochemistry, genetics, and molecular biology has enabled the identification of proteins and mechanisms that regulate key cellular processes. In this review, seven senior plant cell biologists reflect on the development of this research field in the past decades, including the foundational contributions that their teams have made to our rich, current insights into cell biology. Topics covered include signaling and cell morphogenesis, membrane trafficking, cytokinesis, cytoskeletal regulation, and cell wall biology. In addition, these scientists illustrate the pathways to discovery in this exciting research field.


Assuntos
Parede Celular , Citocinese , Citoesqueleto , Células Vegetais , Fenômenos Fisiológicos Vegetais , Transdução de Sinais , Biologia Celular
7.
Plant Physiol ; 190(4): 2539-2556, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36156105

RESUMO

A signaling complex comprising members of the LORELEI (LRE)-LIKE GPI-anchored protein (LLG) and Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE (CrRLK1L) families perceive RAPID ALKALINIZATION FACTOR (RALF) peptides and regulate growth, reproduction, immunity, and stress responses in Arabidopsis (Arabidopsis thaliana). Genes encoding these proteins are members of multigene families in most angiosperms and could generate thousands of signaling complex variants. However, the links between expansion of these gene families and the functional diversification of this critical signaling complex as well as the evolutionary factors underlying the maintenance of gene duplicates remain unknown. Here, we investigated LLG gene family evolution by sampling land plant genomes and explored the function and expression of angiosperm LLGs. We found that LLG diversity within major land plant lineages is primarily due to lineage-specific duplication events, and that these duplications occurred both early in the history of these lineages and more recently. Our complementation and expression analyses showed that expression divergence (i.e. regulatory subfunctionalization), rather than functional divergence, explains the retention of LLG paralogs. Interestingly, all but one monocot and all eudicot species examined had an LLG copy with preferential expression in male reproductive tissues, while the other duplicate copies showed highest levels of expression in female or vegetative tissues. The single LLG copy in Amborella trichopoda is expressed vastly higher in male compared to in female reproductive or vegetative tissues. We propose that expression divergence plays an important role in retention of LLG duplicates in angiosperms.


Assuntos
Arabidopsis , Embriófitas , Magnoliopsida , Arabidopsis/metabolismo , Família Multigênica , Fosfotransferases/genética , Sementes/metabolismo , Embriófitas/genética , Magnoliopsida/genética , Magnoliopsida/metabolismo , Proteínas/genética , Duplicação Gênica , Evolução Molecular , Filogenia
8.
New Phytol ; 230(6): 2261-2274, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33338267

RESUMO

The nucellus tissue in flowering plants provides nutrition for the development of the female gametophyte (FG) and young embryo. The nucellus degenerates as the FG develops, but the mechanism controlling the coupled process of nucellar degeneration and FG expansion remains largely unknown. The degeneration process of the nucellus and spatiotemporal auxin distribution in the developing ovule before fertilization were investigated in Arabidopsis thaliana. Nucellar degeneration before fertilization occurs through vacuolar cell death and in an ordered degeneration fashion. This sequential nucellar degeneration is controlled by the signalling molecule auxin. Auxin efflux plays the core role in precisely controlling the spatiotemporal pattern of auxin distribution in the nucellus surrounding the FG. The auxin efflux carrier PIN1 transports maternal auxin into the nucellus while PIN3/PIN4/PIN7 further delivers auxin to degenerating nucellar cells and concurrently controls FG central vacuole expansion. Notably, auxin concentration and auxin efflux are controlled by the maternal tissues, acting as a key communication from maternal to filial tissue.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Ácidos Indolacéticos , Óvulo Vegetal/metabolismo
10.
New Phytol ; 222(2): 687-693, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30556141

RESUMO

Contents Summary 687 I. Introduction 687 II. Pollen tube membrane-localized receptors coordinate cell integrity and sperm release 689 III. RALF peptides mediate autocrine and paracrine signaling 689 IV. ROS and ion channel signaling mediate intracellular response 690 V. Involvements from pollen tube cell wall components 690 VI. Concluding remarks 691 Acknowledgements 692 Author contributions 692 References 692 SUMMARY: Unlike in animals, sperm in flowering plants are immotile and they are embraced as passive cargoes by a pollen tube which embarks on a long journey in the pistil to deliver them to the female gametophyte for fertilization. How the pollen tube switches from a rapid polarized growth towards its target to an abrupt disintegration for sperm cell release inside the female gametophyte is puzzling. Recent studies have shown that members of the Catharanthus roseus RLK1-like (CrRLK1L) receptor kinase family and their ligands, 5-kDa cysteine-rich peptide rapid alkalinization factors (RALFs), engage in an intricate balancing act involving autocrine and paracrine signaling to maintain pollen tube growth and induce timely tube rupture at the spatially confined pollen tube-female gametophyte interface. Here, we review recent progress related to pollen tube integrity control, mainly focusing on the molecular understanding of signaling as well as intracellular signaling nodes in Arabidopsis. Some missing links and future perspectives are also discussed.


Assuntos
Magnoliopsida/fisiologia , Tubo Polínico/genética , Tubo Polínico/fisiologia , Peptídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
11.
J Exp Bot ; 70(7): 2157-2171, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30778561

RESUMO

Few atypical aspartic proteases (APs) present in plants have been functionally studied to date despite having been implicated in developmental processes and stress responses. Here we characterize a novel atypical AP that we name Atypical Aspartic Protease in Roots 1 (ASPR1), denoting its expression in Arabidopsis roots. Recombinant ASPR1 produced by transient expression in Nicotiana benthamiana was active and displayed atypical properties, combining optimum acidic pH, partial sensitivity to pepstatin, pronounced sensitivity to redox agents, and unique specificity preferences resembling those of fungal APs. ASPR1 overexpression suppressed primary root growth and lateral root development, implying a previously unknown biological role for an AP. Quantitative comparison of wild-type and aspr1 root proteomes revealed deregulation of proteins associated with both reactive oxygen species and auxin homeostasis in the mutant. Together, our findings on ASPR1 reinforce the diverse pattern of enzymatic properties and biological roles of atypical APs and raise exciting questions on how these distinctive features impact functional specialization among these proteases.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ácido Aspártico Proteases/genética , Regulação da Expressão Gênica de Plantas , Organogênese Vegetal/genética , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácido Aspártico Proteases/metabolismo , Raízes de Plantas/metabolismo
12.
Plant Physiol ; 175(3): 1105-1120, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28874520

RESUMO

In Solanaceae, the S-specific interaction between the pistil S-RNase and the pollen S-Locus F-box protein controls self-incompatibility (SI). Although this interaction defines the specificity of the pollen rejection response, the identification of three pistil essential modifier genes unlinked to the S-locus (HT-B, 120K, and NaStEP) unveils a higher degree of complexity in the pollen rejection pathway. We showed previously that NaStEP, a stigma protein with homology with Kunitz-type protease inhibitors, is essential to SI in Nicotiana spp. During pollination, NaStEP is taken up by pollen tubes, where potential interactions with pollen tube proteins might underlie its function. Here, we identified NaSIPP, a mitochondrial protein with phosphate transporter activity, as a novel NaStEP-interacting protein. Coexpression of NaStEP and NaSIPP in pollen tubes showed interaction in the mitochondria, although when expressed alone, NaStEP remains mostly cytosolic, implicating NaSIPP-mediated translocation of NaStEP into the organelle. The NaSIPP transcript is detected specifically in mature pollen of Nicotiana spp.; however, in self-compatible plants, this gene has accumulated mutations, so its coding region is unlikely to produce a functional protein. RNA interference suppression of NaSIPP in Nicotiana spp. pollen grains disrupts the SI by preventing pollen tube inhibition. Taken together, our results are consistent with a model whereby the NaStEP and NaSIPP interaction, in incompatible pollen tubes, might destabilize the mitochondria and contribute to arrest pollen tube growth.


Assuntos
Proteínas Mitocondriais/metabolismo , Nicotiana/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Plantas/metabolismo , Autoincompatibilidade em Angiospermas , Regulação da Expressão Gênica de Plantas , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Modelos Moleculares , Mutação/genética , Proteínas de Transporte de Fosfato/química , Células Vegetais/metabolismo , Proteínas de Plantas/química , Tubo Polínico/metabolismo , Ligação Proteica , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/metabolismo , Nicotiana/genética
13.
Plant Physiol ; 175(1): 157-171, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28698357

RESUMO

Polar auxin transport, facilitated by the combined activities of auxin influx and efflux carriers to maintain asymmetric auxin distribution, is essential for plant growth and development. Here, we show that Arabidopsis (Arabidopsis thaliana) RopGEF1, a guanine nucleotide exchange factor and activator of Rho GTPases of plants (ROPs), is critically involved in polar distribution of auxin influx carrier AUX1 and differential accumulation of efflux carriers PIN7 and PIN2 and is important for embryo and early seedling development when RopGEF1 is prevalently expressed. Knockdown or knockout of RopGEF1 induces embryo defects, cotyledon vein breaks, and delayed root gravity responses. Altered expression from the auxin response reporter DR5rev:GFP in the root pole of RopGEF1-deficient embryos and loss of asymmetric distribution of DR5rev:GFP in their gravistimulated root tips suggest that auxin distribution is affected in ropgef1 mutants. This is reflected by the polarity of AUX1 being altered in ropgef1 embryos and roots, shifting from the normal apical membrane location to a basal location in embryo central vascular and root protophloem cells and also reduced PIN7 accumulation at embryos and altered PIN2 distribution in gravistimulated roots of mutant seedlings. In establishing that RopGEF1 is critical for AUX1 localization and PIN differential accumulation, our results reveal a role for RopGEF1 in cell polarity and polar auxin transport whereby it imapcts auxin-mediated plant growth and development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ácidos Indolacéticos/metabolismo , Plântula/metabolismo , Sementes/metabolismo , Actinas/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Meristema/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Sementes/embriologia
15.
J Exp Bot ; 68(12): 3165-3178, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338823

RESUMO

Flowering plant genomes encode multiple cation/H+ exchangers (CHXs) whose functions are largely unknown. AtCHX17, AtCHX18, and AtCHX19 are membrane transporters that modulate K+ and pH homeostasis and are localized in the dynamic endomembrane system. Loss of function reduced seed set, but the particular phase(s) of reproduction affected was not determined. Pollen tube growth and ovule targeting of chx17chx18chx19 mutant pollen appeared normal, but reciprocal cross experiments indicate a largely male defect. Although triple mutant pollen tubes reach ovules of a wild-type pistil and a synergid cell degenerated, half of those ovules were unfertilized or showed fertilization of the egg or central cell, but not both female gametes. Fertility could be partially compromised by impaired pollen tube and/or sperm function as CHX19 and CHX18 are expressed in the pollen tube and sperm cell, respectively. When fertilization was successful in self-pollinated mutants, early embryo formation was retarded compared with embryos from wild-type ovules receiving mutant pollen. Thus CHX17 and CHX18 proteins may promote embryo development possibly through the endosperm where these genes are expressed. The reticulate pattern of the pollen wall was disorganized in triple mutants, indicating perturbation of wall formation during male gametophyte development. As pH and cation homeostasis mediated by AtCHX17 affect membrane trafficking and cargo delivery, these results suggest that male fertility, sperm function, and embryo development are dependent on proper cargo sorting and secretion that remodel cell walls, plasma membranes, and extracellular factors.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Trocadores de Sódio-Hidrogênio/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Fertilidade , Homeostase , Concentração de Íons de Hidrogênio , Tubo Polínico/crescimento & desenvolvimento , Potássio/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Trocadores de Sódio-Hidrogênio/metabolismo
16.
Plant Cell ; 26(9): 3501-18, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25217509

RESUMO

ROP GTPases are crucial for the establishment of cell polarity and for controlling responses to hormones and environmental signals in plants. In this work, we show that ROP3 plays important roles in embryo development and auxin-dependent plant growth. Loss-of-function and dominant-negative (DN) mutations in ROP3 induced a spectrum of similar defects starting with altered cell division patterning during early embryogenesis to postembryonic auxin-regulated growth and developmental responses. These resulted in distorted embryo development, defective organ formation, retarded root gravitropism, and reduced auxin-dependent hypocotyl elongation. Our results showed that the expression of AUXIN RESPONSE FACTOR5/MONOPTEROS and root master regulators PLETHORA1 (PLT1) and PLT2 was reduced in DN-rop3 mutant embryos, accounting for some of the observed patterning defects. ROP3 mutations also altered polar localization of auxin efflux proteins (PINs) at the plasma membrane (PM), thus disrupting auxin maxima in the root. Notably, ROP3 is induced by auxin and prominently detected in root stele cells, an expression pattern similar to those of several stele-enriched PINs. Our results demonstrate that ROP3 is important for maintaining the polarity of PIN proteins at the PM, which in turn ensures polar auxin transport and distribution, thereby controlling plant patterning and auxin-regulated responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Polaridade Celular , GTP Fosfo-Hidrolases/metabolismo , Ácidos Indolacéticos/metabolismo , Plântula/crescimento & desenvolvimento , Sementes/embriologia , Arabidopsis/citologia , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/genética , GTP Fosfo-Hidrolases/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucuronidase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Ácidos Indolacéticos/farmacologia , Mutação/genética , Fenótipo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Transporte Proteico/efeitos dos fármacos , Plântula/citologia , Plântula/efeitos dos fármacos , Sementes/citologia , Sementes/efeitos dos fármacos , Sementes/genética , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
18.
New Phytol ; 232(2): 958, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34397106
20.
Proc Natl Acad Sci U S A ; 109(36): 14693-8, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22908257

RESUMO

Plant growth and development are controlled by a delicate balance of hormonal cues. Growth-promoting hormones and growth-inhibiting counterparts often antagonize each other in their action, but the molecular mechanisms underlying these events remain largely unknown. Here, we report a cross-talk mechanism that enables a receptor-like kinase, FERONIA (FER), a positive regulator of auxin-promoted growth, to suppress the abscisic acid (ABA) response through activation of ABI2, a negative regulator of ABA signaling. The FER pathway consists of a FER kinase interacting with guanine exchange factors GEF1, GEF4, and GEF10 that, in turn, activate GTPase ROP11/ARAC10. Arabidopsis mutants disrupted in any step of the FER pathway, including fer, gef1gef4gef10, or rop11/arac10, all displayed an ABA-hypersensitive response, implicating the FER pathway in the suppression mechanism. In search of the target for the FER pathway, we found that the ROP11/ARAC10 protein physically interacted with the ABI2 phosphatase and enhanced its activity, thereby linking the FER pathway with the inhibition of ABA signaling.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Ativação Enzimática/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Fosfotransferases/metabolismo , Transdução de Sinais/fisiologia , Ácido Abscísico/antagonistas & inibidores , Proteínas de Arabidopsis/genética , Clonagem Molecular , Primers do DNA/genética , Proteínas de Ligação ao GTP/genética , Perfilação da Expressão Gênica , Vetores Genéticos , Glucuronidase/metabolismo , Microscopia de Fluorescência , Espécies Reativas de Oxigênio/metabolismo , Transformação Genética , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA