Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 142(2): 270-83, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20655468

RESUMO

Mechanisms that regulate cellular metabolism are a fundamental requirement of all cells. Most eukaryotic cells rely on aerobic mitochondrial metabolism to generate ATP. Nevertheless, regulation of mitochondrial activity is incompletely understood. Here we identified an unexpected and essential role for constitutive InsP(3)R-mediated Ca(2+) release in maintaining cellular bioenergetics. Macroautophagy provides eukaryotes with an adaptive response to nutrient deprivation that prolongs survival. Constitutive InsP(3)R Ca(2+) signaling is required for macroautophagy suppression in cells in nutrient-replete media. In its absence, cells become metabolically compromised due to diminished mitochondrial Ca(2+) uptake. Mitochondrial uptake of InsP(3)R-released Ca(2+) is fundamentally required to provide optimal bioenergetics by providing sufficient reducing equivalents to support oxidative phosphorylation. Absence of this Ca(2+) transfer results in enhanced phosphorylation of pyruvate dehydrogenase and activation of AMPK, which activates prosurvival macroautophagy. Thus, constitutive InsP(3)R Ca(2+) release to mitochondria is an essential cellular process that is required for efficient mitochondrial respiration and maintenance of normal cell bioenergetics.


Assuntos
Linfócitos B/metabolismo , Sinalização do Cálcio , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Animais , Autofagia , Cálcio/metabolismo , Linhagem Celular , Galinhas , Técnicas de Inativação de Genes
2.
Acta Pharmacol Sin ; 45(5): 900-913, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225393

RESUMO

Autophagy impairment is a key factor in Alzheimer's disease (AD) pathogenesis. TFEB (transcription factor EB) and TFE3 (transcription factor binding to IGHM enhancer 3) are nuclear transcription factors that regulate autophagy and lysosomal biogenesis. We previously showed that corynoxine (Cory), a Chinese medicine compound, protects neurons from Parkinson's disease (PD) by activating autophagy. In this study, we investigated the effect of Cory on AD models in vivo and in vitro. We found that Cory improved learning and memory function, increased neuronal autophagy and lysosomal biogenesis, and reduced pathogenic APP-CTFs levels in 5xFAD mice model. Cory activated TFEB/TFE3 by inhibiting AKT/mTOR signaling and stimulating lysosomal calcium release via transient receptor potential mucolipin 1 (TRPML1). Moreover, we demonstrated that TFEB/TFE3 knockdown abolished Cory-induced APP-CTFs degradation in N2aSwedAPP cells. Our findings suggest that Cory promotes TFEB/TFE3-mediated autophagy and alleviates Aß pathology in AD models.


Assuntos
Doença de Alzheimer , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Modelos Animais de Doenças , Canais de Potencial de Receptor Transitório , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Autofagia/efeitos dos fármacos , Camundongos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Humanos , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética
3.
Int J Mol Sci ; 24(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37511539

RESUMO

Neuroinflammation is the precursor for several neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Targeting neuroinflammation has emerged as a promising strategy to address a wide range of CNS pathologies. These NDDs still present significant challenges in terms of limited and ineffective diagnosis and treatment options, driving the need to explore innovative and novel therapeutic alternatives. Aptamers are single-stranded nucleic acids that offer the potential for addressing these challenges through diagnostic and therapeutic applications. In this review, we summarize diagnostic and therapeutic aptamers for inflammatory biomolecules, as well as the inflammatory cells in NDDs. We also discussed the potential of short nucleotides for Aptamer-Based Targeted Brain Delivery through their unique features and modifications, as well as their ability to penetrate the blood-brain barrier. Moreover, the unprecedented opportunities and substantial challenges of using aptamers as therapeutic agents, such as drug efficacy, safety considerations, and pharmacokinetics, are also discussed. Taken together, this review assesses the potential of aptamers as a pioneering approach for target delivery to the CNS and the treatment of neuroinflammation and NDDs.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neuroinflamatórias , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Doença de Alzheimer/tratamento farmacológico , Encéfalo/patologia , Oligonucleotídeos/uso terapêutico
4.
J Biomed Sci ; 29(1): 85, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273169

RESUMO

BACKGROUND: Tauopathies are neurodegenerative diseases that are associated with the pathological accumulation of tau-containing tangles in the brain. Tauopathy can impair cognitive and motor functions and has been observed in Alzheimer's disease (AD) and frontotemporal dementia (FTD). The aetiology of tauopathy remains mysterious; however, recent studies suggest that the autophagic-endolysosomal function plays an essential role in the degradation and transmission of pathological tau. We previously demonstrated that tetrandrine could ameliorate memory functions and clear amyloid plaques in transgenic AD mice by restoring autophagic-endolysosomal function. However, the efficacy of tetrandrine and the associated therapeutic mechanism in tauopathies have not been evaluated and elucidated. METHODS: Novel object recognition, fear conditioning and electrophysiology were used to evaluate the effects of tetrandrine on memory functions in transgenic tau mice. Western blotting and immunofluorescence staining were employed to determine the effect of tetrandrine on autophagy and tau clearance in vivo. Calcium (Ca2+) imaging and flow cytometry were used to delineate the role of pathological tau and tetrandrine in lysosomal Ca2+ and pH homeostasis. Biochemical BiFC fluorescence, Western blotting and immunofluorescence staining were used to evaluate degradation of hyperphosphorylated tau in vitro, whereas coculture of brain slices with isolated microglia was used to evaluate tau clearance ex vivo. RESULTS: We observed that tetrandrine treatment mitigated tau tangle development and corrected memory impairment in Thy1-hTau.P301S transgenic mice. Mechanistically, we showed that mutant tau expression disrupts lysosome pH by increasing two-pore channel 2 (TPC2)-mediated Ca2+ release, thereby contributing to lysosome alkalinization. Tetrandrine inhibits TPC2, thereby restoring the lysosomal pH, promotes tau degradation via autophagy, and ameliorates tau aggregation. Furthermore, in an ex vivo assay, we demonstrated that tetrandrine treatment promotes pathological tau clearance by microglia. CONCLUSIONS: Together, these findings suggest that pathological tau disturbs endolysosomal homeostasis to impair tau clearance. This impairment results in a vicious cycle that accelerates disease pathogenesis. The success of tetrandrine in reducing tau aggregation suggests first, that tetrandrine could be an effective drug for tauopathies and second, that rescuing lysosomal Ca2+ homeostasis, thereby restoring ALP function, could be an effective general strategy for the development of novel therapies for tauopathies.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Camundongos , Proteínas tau/genética , Cálcio , Modelos Animais de Doenças , Tauopatias/tratamento farmacológico , Tauopatias/patologia , Camundongos Transgênicos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Cognição
5.
Acta Pharmacol Sin ; 43(10): 2511-2526, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35217810

RESUMO

Increasing evidence shows that autophagy impairment is involved in the pathogenesis and progression of neurodegenerative diseases including Parkinson's disease (PD). We previously identified a natural alkaloid named corynoxine B (Cory B) as a neuronal autophagy inducer. However, its brain permeability is relatively low, which hinders its potential use in treating PD. Thus we synthesized various derivatives of Cory B to find more potent autophagy inducers with improved brain bioavailability. In this study, we evaluated the autophagy-enhancing effect of CB6 derivative and its neuroprotective action against PD in vitro and in vivo. We showed that CB6 (5-40 µM) dose-dependently accelerated autophagy flux in cultured N2a neural cells through activating the PIK3C3 complex and promoting PI3P production. In MPP+-treated PC12 cells, CB6 inhibited cell apoptosis and increased cell viability by inducing autophagy. In MPTP-induced mouse model of PD, oral administration of CB6 (10, 20 mg· kg-1· d-1, for 21 days) significantly improved motor dysfunction and prevented the loss of dopaminergic neurons in the striatum and substantia nigra pars compacta. Collectively, compound CB6 is a brain-permeable autophagy enhancer via PIK3C3 complex activation, which may help the prevention or treatment of PD.


Assuntos
Alcaloides , Fármacos Neuroprotetores , Doença de Parkinson , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Alcaloides/farmacologia , Animais , Autofagia , Classe III de Fosfatidilinositol 3-Quinases/farmacologia , Neurônios Dopaminérgicos , Indóis , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/patologia , Ratos , Compostos de Espiro
6.
Acta Pharmacol Sin ; 43(5): 1251-1263, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34417577

RESUMO

Transcriptional factor EB (TFEB), a master regulator of autophagy and lysosomal biogenesis, is generally regarded as a pro-survival factor. Here, we identify that besides its effect on autophagy induction, TFEB exerts a pro-apoptotic effect in response to the cyclopentenone prostaglandin 15-deoxy-∆-12,14-prostaglandin J2 (15d-PGJ2). Specifically, 15d-PGJ2 promotes TFEB translocation from the cytoplasm into the nucleus to induce autophagy and lysosome biogenesis via reactive oxygen species (ROS) production rather than mTORC1 inactivation. Surprisingly, TFEB promotes rather than inhibits apoptosis in response to 15d-PGJ2. Mechanistically, ROS-mediated TFEB translocation into the nucleus transcriptionally upregulates the expression of ATF4, which is required for apoptosis elicited by 15d-PGJ2. Additionally, inhibition of TFEB activation by ROS scavenger N-acetyl cysteine or inhibition of protein synthesis by cycloheximide effectively compromises ATF4 upregulation and apoptosis in response to 15d-PGJ2. Collectively, these results indicate that ROS-induced TFEB activation exerts a novel role in promoting apoptosis besides its role in regulating autophagy in response to 15d-PGJ2. This work not only evidences how TFEB is activated by 15d-PGJ2, but also unveils a previously unexplored role of ROS-dependent activation of TFEB in modulating cell apoptosis in response to 15d-PGJ2.


Assuntos
Prostaglandina D2 , Prostaglandinas , Apoptose , Autofagia , Ciclopentanos , Prostaglandina D2/análogos & derivados , Prostaglandina D2/farmacologia , Prostaglandinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
7.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408965

RESUMO

Eukaryotic cells possess a plethora of regulatory mechanisms to maintain homeostasis and ensure proper biochemical functionality. Autophagy, a central, conserved self-consuming process of the cell, ensures the timely degradation of damaged cellular components. Several studies have demonstrated the important roles of autophagy activation in mitigating neurodegenerative diseases, especially Alzheimer's disease (AD). However, surprisingly, activation of macroautophagy has not shown clinical efficacy. Hence, alternative strategies are urgently needed for AD therapy. In recent years, selective autophagy has been reported to be involved in AD pathology, and different subtypes have been identified, such as aggrephagy, mitophagy, reticulophagy, lipophagy, pexophagy, nucleophagy, lysophagy and ribophagy. By clarifying the underlying mechanisms governing these various subtypes, we may come to understand how to control autophagy to treat AD. In this review, we summarize the latest findings concerning the role of selective autophagy in the pathogenesis of AD. The evidence overwhelmingly suggests that selective autophagy is an active mechanism in AD pathology, and that regulating selective autophagy would be an effective strategy for controlling this pathogenesis.


Assuntos
Doença de Alzheimer , Macroautofagia , Doença de Alzheimer/patologia , Autofagia/fisiologia , Humanos , Mitofagia/fisiologia
8.
BMC Biol ; 18(1): 158, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33138808

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

9.
Int J Mol Sci ; 21(4)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098449

RESUMO

Abstract: TFEB (transcription factor EB), which is a master regulator of autophagy and lysosome biogenesis, is considered to be a new therapeutic target for Parkinson's disease (PD). However, only several small-molecule TFEB activators have been discovered and their neuroprotective effects in PD are unclear. In this study, a curcumin derivative, named E4, was identified as a potent TFEB activator. Compound E4 promoted the translocation of TFEB from cytoplasm into nucleus, accompanied by enhanced autophagy and lysosomal biogenesis. Moreover, TFEB knockdown effectively attenuated E4-induced autophagy and lysosomal biogenesis. Mechanistically, E4-induced TFEB activation is mainly through AKT-MTORC1 inhibition. In the PD cell models, E4 promoted the degradation of α-synuclein and protected against the cytotoxicity of MPP+ (1-methyl-4-phenylpyridinium ion) in neuronal cells. Overall, the TFEB activator E4 deserves further study in animal models of neurodegenerative diseases, including PD.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Curcumina/farmacologia , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , 1-Metil-4-fenilpiridínio/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Curcumina/química , Células HeLa , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/prevenção & controle , Neurônios/citologia , Neurônios/efeitos dos fármacos , Células PC12 , Doença de Parkinson/genética , Doença de Parkinson/prevenção & controle , Interferência de RNA , Ratos , Transdução de Sinais/efeitos dos fármacos , alfa-Sinucleína/metabolismo
10.
BMC Biol ; 16(1): 46, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703257

RESUMO

BACKGROUND: Candida albicans (C. albicans) invasion triggers antifungal innate immunity, and the elevation of cytoplasmic Ca2+ levels via the inositol 1,4,5-trisphosphate receptor (InsP3R) plays a critical role in this process. However, the molecular pathways linking the InsP3R-mediated increase in Ca2+ and immune responses remain elusive. RESULTS: In the present study, we find that during C. albicans phagocytosis in macrophages, exocyst complex component 2 (SEC5) promotes InsP3R channel activity by binding to its C-terminal α-helix (H1), increasing cytosolic Ca2+ concentrations ([Ca2+]c). Immunofluorescence reveals enriched InsP3R-SEC5 complex formation on phagosomes, while disruption of the InsP3R-SEC5 interaction by recombinant H1 peptides attenuates the InsP3R-mediated Ca2+ elevation, leading to impaired phagocytosis. Furthermore, we show that C. albicans infection promotes the recruitment of Tank-binding kinase 1 (TBK1) by the InsP3R-SEC5 interacting complex, leading to the activation of TBK1. Subsequently, activated TBK1 phosphorylates interferon regulatory factor 3 (IRF-3) and mediates type I interferon responses, suggesting that the InsP3R-SEC5 interaction may regulate antifungal innate immune responses not only by elevating cytoplasmic Ca2+ but also by activating the TBK1-IRF-3 pathway. CONCLUSIONS: Our data have revealed an important role of the InsP3R-SEC5 interaction in innate immune responses against C. albicans.


Assuntos
Cálcio/metabolismo , Candida albicans/metabolismo , Citosol/metabolismo , Imunidade Inata/fisiologia , Fator Regulador 3 de Interferon/metabolismo , Fagossomos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Citoplasma/metabolismo , Células HEK293 , Humanos , Interferon Tipo I/metabolismo , Camundongos , Fagocitose/fisiologia
11.
Int J Mol Sci ; 20(3)2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30744070

RESUMO

The mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in regulating cell growth, proliferation, and life span. mTOR signaling is a central regulator of autophagy by modulating multiple aspects of the autophagy process, such as initiation, process, and termination through controlling the activity of the unc51-like kinase 1 (ULK1) complex and vacuolar protein sorting 34 (VPS34) complex, and the intracellular distribution of TFEB/TFE3 and proto-lysosome tubule reformation. Parkinson's disease (PD) is a serious, common neurodegenerative disease characterized by dopaminergic neuron loss in the substantia nigra pars compacta (SNpc) and the accumulation of Lewy bodies. An increasing amount of evidence indicates that mTOR and autophagy are critical for the pathogenesis of PD. In this review, we will summarize recent advances regarding the roles of mTOR and autophagy in PD pathogenesis and treatment. Further characterizing the dysregulation of mTOR pathway and the clinical translation of mTOR modulators in PD may offer exciting new avenues for future drug development.


Assuntos
Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Biomarcadores , Proteínas de Transporte/metabolismo , Humanos , Terapia de Alvo Molecular , Doença de Parkinson/etiologia , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia
12.
PLoS Comput Biol ; 11(10): e1004529, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26439382

RESUMO

Familial Alzheimer's disease (FAD)-causing mutant presenilins (PS) interact with inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) Ca(2+) release channels resulting in enhanced IP3R channel gating in an amyloid beta (Aß) production-independent manner. This gain-of-function enhancement of IP3R activity is considered to be the main reason behind the upregulation of intracellular Ca(2+) signaling in the presence of optimal and suboptimal stimuli and spontaneous Ca(2+) signals observed in cells expressing mutant PS. In this paper, we employed computational modeling of single IP3R channel activity records obtained under optimal Ca(2+) and multiple IP3 concentrations to gain deeper insights into the enhancement of IP3R function. We found that in addition to the high occupancy of the high-activity (H) mode and the low occupancy of the low-activity (L) mode, IP3R in FAD-causing mutant PS-expressing cells exhibits significantly longer mean life-time for the H mode and shorter life-time for the L mode, leading to shorter mean close-time and hence high open probability of the channel in comparison to IP3R in cells expressing wild-type PS. The model is then used to extrapolate the behavior of the channel to a wide range of IP3 and Ca(2+) concentrations and quantify the sensitivity of IP3R to its two ligands. We show that the gain-of-function enhancement is sensitive to both IP3 and Ca(2+) and that very small amount of IP3 is required to stimulate IP3R channels in the presence of FAD-causing mutant PS to the same level of activity as channels in control cells stimulated by significantly higher IP3 concentrations. We further demonstrate with simulations that the relatively longer time spent by IP3R in the H mode leads to the observed higher frequency of local Ca(2+) signals, which can account for the more frequent global Ca(2+) signals observed, while the enhanced activity of the channel at extremely low ligand concentrations will lead to spontaneous Ca(2+) signals in cells expressing FAD-causing mutant PS.


Assuntos
Doença de Alzheimer/metabolismo , Cálcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ativação do Canal Iônico , Modelos Biológicos , Presenilinas/metabolismo , Animais , Cálcio/química , Sinalização do Cálcio , Simulação por Computador , Humanos , Receptores de Inositol 1,4,5-Trifosfato/química , Insetos , Modelos Químicos , Presenilinas/química , Presenilinas/genética
13.
Proc Natl Acad Sci U S A ; 109(28): E1963-71, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22711817

RESUMO

Extracellular Ca(2+) (Ca(2+)(o)) plays important roles in physiology. Changes of Ca(2+)(o) concentration ([Ca(2+)](o)) have been observed to modulate neuronal excitability in various physiological and pathophysiological settings, but the mechanisms by which neurons detect [Ca(2+)](o) are not fully understood. Calcium homeostasis modulator 1 (CALHM1) expression was shown to induce cation currents in cells and elevate cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) in response to removal of Ca(2+)(o) and its subsequent addback. However, it is unknown whether CALHM1 is a pore-forming ion channel or modulates endogenous ion channels. Here we identify CALHM1 as the pore-forming subunit of a plasma membrane Ca(2+)-permeable ion channel with distinct ion permeability properties and unique coupled allosteric gating regulation by voltage and [Ca(2+)](o). Furthermore, we show that CALHM1 is expressed in mouse cortical neurons that respond to reducing [Ca(2+)](o) with enhanced conductance and action potential firing and strongly elevated [Ca(2+)](i) upon Ca(2+)(o) removal and its addback. In contrast, these responses are strongly muted in neurons from mice with CALHM1 genetically deleted. These results demonstrate that CALHM1 is an evolutionarily conserved ion channel family that detects membrane voltage and extracellular Ca(2+) levels and plays a role in cortical neuronal excitability and Ca(2+) homeostasis, particularly in response to lowering [Ca(2+)](o) and its restoration to normal levels.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/genética , Animais , Sítios de Ligação , Cálcio/química , Canais de Cálcio/genética , Eletrofisiologia/métodos , Feminino , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Íons , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Mutagênese , Doenças Neurodegenerativas/genética , Oócitos/citologia , Oócitos/metabolismo , Polimorfismo Genético , Fatores de Tempo , Xenopus
14.
Anesthesiology ; 121(3): 528-37, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24878495

RESUMO

BACKGROUND: Pharmacological evidence suggests that inhalational general anesthetics induce neurodegeneration in vitro and in vivo through overactivation of inositol trisphosphate receptor (InsP3R) Ca-release channels, but it is not clear whether these effects are due to direct modulation of channel activity by the anesthetics. METHODS: Using single-channel patch clamp electrophysiology, the authors examined the gating of rat recombinant type 3 InsP3R (InsP3R-3) Ca-release channels in isolated nuclei (N = 3 to 15) from chicken lymphocytes modulated by isoflurane at clinically relevant concentrations in the absence and presence of physiological levels of the agonist inositol 1,4,5-trisphosphate (InsP3). The authors also examined the effects of isoflurane on InsP3R-mediated Ca release from the endoplasmic reticulum and changes in intracellular Ca concentration ([Ca]i). RESULTS: Clinically relevant concentrations (approximately 1 minimal alveolar concentration) of the commonly used general anesthetic, isoflurane, activated InsP3R-3 channels with open probability similar to channels activated by 1 µM InsP3 (Po ≈ 0.2). This isoflurane modulation of InsP3R-3 Po depended biphasically on [Ca]i. Combination of isoflurane with subsaturating levels of InsP3 in patch pipettes resulted in at least two-fold augmentations of InsP3R-3 channel Po compared with InsP3 alone. These effects were not noted in the presence of saturating [InsP3]. Application of isoflurane to DT40 cells resulted in a 30% amplification of InsP3R-mediated [Ca]i oscillations, whereas InsP3-induced increase in [Ca]i and cleaved caspase-3 activity were enhanced by approximately 2.5-fold. CONCLUSION: These results suggest that the InsP3R may be a direct molecular target of isoflurane and plays a role in the mechanisms of anesthetic-mediated pharmacological or neurotoxic effects.


Assuntos
Anestésicos Inalatórios/farmacologia , Canais de Cálcio/efeitos dos fármacos , Receptores de Inositol 1,4,5-Trifosfato/efeitos dos fármacos , Isoflurano/farmacologia , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Canais de Cálcio/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Galinhas , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Ratos
15.
Proc Natl Acad Sci U S A ; 108(32): 13293-8, 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21784978

RESUMO

Mutations in presenilins (PS) account for most early-onset familial Alzheimer's disease (FAD). Accumulating evidence suggests that disrupted Ca(2+) signaling may play a proximal role in FAD specifically, and Alzheimer's disease (AD) more generally, but its links to the pathogenesis of AD are obscure. Here we demonstrate that expression of FAD mutant PS constitutively activates the transcription factor cAMP response element binding protein (CREB) and CREB target gene expression in cultured neuronal cells and AD mouse models. Constitutive CREB activation was associated with and dependent on constitutive activation of Ca(2+)/CaM kinase kinase ß and CaM kinase IV (CaMKIV). Depletion of endoplasmic reticulum Ca(2+) stores or plasma membrane phosphatidylinositol-bisphosphate and pharmacologic inhibition or knockdown of the expression of the inositol trisphosphate receptor (InsP(3)R) Ca(2+) release channel each abolished FAD PS-associated constitutive CaMKIV and CREB phosphorylation. CREB and CaMKIV phosphorylation and CREB target gene expression, including nitric oxide synthase and c-fos, were enhanced in brains of M146V-KI and 3xTg-AD mice expressing FAD mutant PS1 knocked into the mouse locus. FAD mutant PS-expressing cells demonstrated enhanced cell death and sensitivity to Aß toxicity, which were normalized by interfering with the InsP(3)R-CAMKIV-CREB pathway. Thus, constitutive CREB phosphorylation by exaggerated InsP(3)R Ca(2+) signaling in FAD PS-expressing cells may represent a signaling pathway involved in the pathogenesis of AD.


Assuntos
Doença de Alzheimer/metabolismo , Sinalização do Cálcio , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Presenilina-1/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/patologia , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Morte Celular/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Ativação Enzimática/efeitos dos fármacos , Humanos , Camundongos , Camundongos Transgênicos , Mutação/genética , Fosforilação/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
16.
J Neuroimmune Pharmacol ; 18(3): 509-528, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37682502

RESUMO

The autophagy-lysosomal pathway (ALP) is a major cellular machinery involved in the clearance of aggregated proteins in Alzheimer disease (AD). However, ALP is dramatically impaired during AD pathogenesis via accumulation of toxic amyloid beta (Aß) and phosphorylated-Tau (phospho-Tau) proteins in the brain. Therefore, activation of ALP may prevent the increased production of Aß and phospho-Tau in AD. Peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor that can activate autophagy, and transcriptionally regulate transcription factor EB (TFEB) which is a key regulator of ALP. This suggests that targeting PPARα, to reduce ALP impairment, could be a viable strategy for AD therapy. In this study, we investigated the anti-AD activity of Caudatin, an active constituent of Cynanchum otophyllum (a traditional Chinese medicinal herb, Qing Yang Shen; QYS). We found that Caudatin can bind to PPARα as a ligand and augment the expression of ALP in microglial cells and in the brain of 3XTg-AD mice model. Moreover, Caudatin could activate PPARα and transcriptionally regulates TFEB-augmented lysosomal degradation of Aß and phosphor-Tau aggregates in AD cell models. Oral administration of Caudatin decreased AD pathogenesis and ameliorated the cognitive dysfunction in 3XTg-AD mouse model. Conclusively, Caudatin can be a potential AD therapeutic agent via activation of PPARα-dependent ALP.

17.
Biomed Pharmacother ; 164: 114935, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37245337

RESUMO

Asthma is a chronic inflammatory disease characterized by airway hypersensitivity and remodeling. The current treatments provide only short-term benefits and may have undesirable side effects; thus, alternative or supplementary therapy is needed. Because intracellular calcium (Ca2+) signaling plays an essential role in regulating the contractility and remodeling of airway smooth muscle cells, the targeting of Ca2+ signaling is a potential therapeutic strategy for asthma. Houttuynia cordata is a traditional Chinese herb that is used to treat asthma due to its anti-allergic and anti-inflammatory properties. We hypothesized that H. cordata might modulate intracellular Ca2+ signaling and could help relieve asthmatic airway remodeling. We found that the mRNA and protein levels of inositol trisphosphate receptors (IP3Rs) were elevated in interleukin-stimulated primary human bronchial smooth muscle cells and a house dust mite-sensitized model of asthma. The upregulation of IP3R expression enhanced intracellular Ca2+ release upon stimulation and contributed to airway remodeling in asthma. Intriguingly, pretreatment with H. cordata essential oil rectified the disruption of Ca2+ signaling, mitigated asthma development, and prevented airway narrowing. Furthermore, our analysis suggested that houttuynin/2-undecanone could be the bioactive component in H. cordata essential oil because we found similar IP3R suppression in response to the commercially available derivative sodium houttuyfonate. An in silico analysis showed that houttuynin, which downregulates IP3R expression, binds to the IP3 binding domain of IP3R and may mediate a direct inhibitory effect. In summary, our findings suggest that H. cordata is a potential alternative treatment choice that may reduce asthma severity by targeting the dysregulation of Ca2+ signaling.


Assuntos
Antiasmáticos , Asma , Houttuynia , Humanos , Sinalização do Cálcio , Houttuynia/metabolismo , Antiasmáticos/farmacologia , Antiasmáticos/uso terapêutico , Brônquios/metabolismo , Asma/tratamento farmacológico , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Cálcio/metabolismo
18.
Signal Transduct Target Ther ; 8(1): 404, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37867176

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the predominant impairment of neurons in the hippocampus and the formation of amyloid plaques, hyperphosphorylated tau protein, and neurofibrillary tangles in the brain. The overexpression of amyloid-ß precursor protein (APP) in an AD brain results in the binding of APP intracellular domain (AICD) to Fe65 protein via the C-terminal Fe65-PTB2 interaction, which then triggers the secretion of amyloid-ß and the consequent pathogenesis of AD. Apparently, targeting the interaction between APP and Fe65 can offer a promising therapeutic approach for AD. Recently, exosome, a type of extracellular vesicle with diameter around 30-200 nm, has gained much attention as a potential delivery tool for brain diseases, including AD, due to their ability to cross the blood-brain barrier, their efficient uptake by autologous cells, and their ability to be surface-modified with target-specific receptor ligands. Here, the engineering of hippocampus neuron cell-derived exosomes to overexpress Fe65, enabled the development of a novel exosome-based targeted drug delivery system, which carried Corynoxine-B (Cory-B, an autophagy inducer) to the APP overexpressed-neuron cells in the brain of AD mice. The Fe65-engineered HT22 hippocampus neuron cell-derived exosomes (Fe65-EXO) loaded with Cory-B (Fe65-EXO-Cory-B) hijacked the signaling and blocked the natural interaction between Fe65 and APP, enabling APP-targeted delivery of Cory-B. Notably, Fe65-EXO-Cory-B induced autophagy in APP-expressing neuronal cells, leading to amelioration of the cognitive decline and pathogenesis in AD mice, demonstrating the potential of Fe65-EXO-Cory-B as an effective therapeutic intervention for AD.


Assuntos
Doença de Alzheimer , Exossomos , Camundongos , Animais , Doença de Alzheimer/patologia , Exossomos/genética , Exossomos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Cognição , Neurônios/patologia
19.
J Biol Chem ; 286(41): 35998-36010, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21859719

RESUMO

The type 1 inositol 1,4,5-trisphosphate receptor (InsP(3)R1) is a ubiquitous intracellular Ca(2+) release channel that is vital to intracellular Ca(2+) signaling. InsP(3)R1 is a proteolytic target of calpain, which cleaves the channel to form a 95-kDa carboxyl-terminal fragment that includes the transmembrane domains, which contain the ion pore. However, the functional consequences of calpain proteolysis on channel behavior and Ca(2+) homeostasis are unknown. In the present study we have identified a unique calpain cleavage site in InsP(3)R1 and utilized a recombinant truncated form of the channel (capn-InsP(3)R1) corresponding to the stable, carboxyl-terminal fragment to examine the functional consequences of channel proteolysis. Single-channel recordings of capn-InsP(3)R1 revealed InsP(3)-independent gating and high open probability (P(o)) under optimal cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) conditions. However, some [Ca(2+)](i) regulation of the cleaved channel remained, with a lower P(o) in suboptimal and inhibitory [Ca(2+)](i). Expression of capn-InsP(3)R1 in N2a cells reduced the Ca(2+) content of ionomycin-releasable intracellular stores and decreased endoplasmic reticulum Ca(2+) loading compared with control cells expressing full-length InsP(3)R1. Using a cleavage-specific antibody, we identified calpain-cleaved InsP(3)R1 in selectively vulnerable cerebellar Purkinje neurons after in vivo cardiac arrest. These findings indicate that calpain proteolysis of InsP(3)R1 generates a dysregulated channel that disrupts cellular Ca(2+) homeostasis. Furthermore, our results demonstrate that calpain cleaves InsP(3)R1 in a clinically relevant injury model, suggesting that Ca(2+) leak through the proteolyzed channel may act as a feed-forward mechanism to enhance cell death.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Calpaína/farmacologia , Homeostase/efeitos dos fármacos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Células de Purkinje/metabolismo , Animais , Canais de Cálcio/metabolismo , Ionóforos de Cálcio/farmacologia , Calpaína/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Retículo Endoplasmático/metabolismo , Ionomicina/farmacologia , Masculino , Proteólise/efeitos dos fármacos , Ratos , Ratos Long-Evans
20.
Redox Biol ; 51: 102280, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35286997

RESUMO

Accumulation of amyloid-ß (Aß) oligomers and phosphorylated Tau aggregates are crucial pathological events or factors that cause progressive neuronal loss, and cognitive impairments in Alzheimer's disease (AD). Current medications for AD have failed to halt, much less reverse this neurodegenerative disorder; therefore, there is an urgent need for the development of effective and safe drugs for AD therapy. In the present study, the in vivo therapeutic efficacy of an Aß-oligomer-targeted fluorescent probe, F-SLOH, was extensively investigated in 5XFAD and 3XTg-AD mouse models. We have shown that F-SLOH exhibits an efficient inhibitory activity against Aß aggregation in vivo, and acts as an effective theranostic agent for the treatment of multiple neuropathological changes in AD mouse models. F-SLOH has been found to significantly reduce not only the levels of Aß oligomers, Tau aggregates and plaques but also the levels of amyloid precursor protein (APP) and its metabolites via autophagy lysosomal degradation pathway (ALP) in the brains of 5XFAD and 3XTg-AD mice. It also reduces astrocyte activation and microgliosis ultimately alleviating neuro-inflammation. Furthermore, F-SLOH mitigates hyperphosphorylated Tau aggregates, synaptic deficits and ameliorates synaptic memory function, and cognitive impairment in AD mouse models. The mechanistic studies have shown that F-SLOH promotes the clearance of C-terminal fragment 15 (CTF15) of APP and Paired helical filaments of Tau (PHF1) in stable cell models via the activation of transcription factor EB (TFEB). Moreover, F-SLOH promotes ALP and lysosomal biogenesis for the clearance of soluble, insoluble Aß, and phospho Tau. Our results unambiguously reveal effective etiological capabilities of theranostic F-SLOH to target and intervene multiple neuropathological changes in AD mouse models. Therefore, F-SLOH demonstrates tremendous therapeutic potential for treating AD in its early stage.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Cognição , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Nanomedicina Teranóstica , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA