Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Biochem ; 121(1): 135-141, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31578769

RESUMO

MicroRNA-132 (miR-132) has been shown to participate in many diseases. This study aimed to understand the correlation between the level of miR-132 and the severity of dementia post-ischemic stroke. An online tool (www.mirdb.org) was used to find the miR-132 binding site in acetylcholinesterase (ACHE) 3'-untranslated region (UTR), followed by a luciferase reporter assay to validate ACHE as a miR-132 target. A similar relationship between miR-132 and ACHE was also established in cerebrospinal fluid samples collected from human subjects. A negative correlation was established between ACHE and miR-132 by measuring the relative luciferase activity. Meanwhile, Western blot analysis and real-time polymerase chain reaction were also conducted to compare the levels of ACHE messenger RNA and protein between two groups (dementia positive, n = 26 and dementia negative, n = 26) or among cells treated with miR-132 mimics, ACHE small interfering RNA, and miR-132 inhibitors. As shown in the results, miR-132 can reduce the expression of ACHE. Further experiments were also carried out to study the effect of miR-132 and ACHE on cell viability and apoptosis, and the results demonstrated that miR-132 enhanced cell viability while suppressing apoptosis. In addition, ACHE reduced cell viability while promoting apoptosis. miR-132 targeted ACHE and suppressed its expression. Additionally, miR-132 and ACHE have been shown to affect the cell viability and apoptosis in the central nervous system.


Assuntos
Acetilcolinesterase/metabolismo , Isquemia Encefálica/enzimologia , Demência/complicações , Demência/enzimologia , AVC Isquêmico/enzimologia , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Idoso , Idoso de 80 Anos ou mais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Isquemia Encefálica/complicações , Proliferação de Células , Sobrevivência Celular , Regulação para Baixo , Feminino , Humanos , AVC Isquêmico/complicações , Masculino , Pessoa de Meia-Idade , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Regulação para Cima
2.
J Cell Biochem ; 120(5): 7516-7526, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30417553

RESUMO

Glioma is a common primary brain tumor with high mortality rate and poor prognosis. Long noncoding RNA maternally expressed gene 3 (MEG3) is a tumor suppressor in diverse cancer types. However, the role of MEG3 in glioma remains unclear. We aimed to explore the effects of MEG3 on U251 cells as well as the underlying mechanisms. U251 cells were stably transfected with different recombined plasmids to overexpress or silence MEG3. Effects of aberrantly expressed MEG3 on cell viability, migration, apoptosis, expressions of apoptosis-associated and autophagy-associated proteins, and phosphorylated levels of key kinases in the PI3K/AKT/mTOR pathway were all evaluated. Then, messenger RNA (mRNA) and protein expression of Sirt7 in cells abnormally expressing MEG3 were estimated. In addition, effects of abnormally expressed MEG3 and Sirt7 on U251 cells were determined to reveal the underlying mechanism of MEG3-associated modulation. Cell viability and migration were significantly reduced by MEG3 overexpression whereas cell apoptosis as well as Bax and cleaved caspase-3/-9 proteins were obviously induced. Beclin-1 and LC3-II/LC3-I were upregulated and p62 was downregulated in MEG3 overexpressed cells. In addition, the autophagy pharmacological inhibitor (3-methyladenine, 3-MA) affected the effect of MEG3 overexpression on cell proliferation. Furthermore, the phosphorylated levels of key kinases in the PI3K/AKT/mTOR pathway were all reduced by MEG3 overexpression. Sirt7 was positively regulated by MEG3 expression, and effects of MEG3 overexpression on U251 cells were ameliorated by Sirt7 silence. MEG3 suppressed cell proliferation and migration but promoted autophagy in U251 cells through positively regulating Sirt7, involving in the inhibition of the PI3K/AKT/mTOR pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA