Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Int ; 134: 105305, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31739136

RESUMO

With the rapid development of the Internet of things (IoTs) and modern industrial society, forecasting air pollution concentration, e.g., the concentration of PM2.5, is of great significance to protect human health and the environment. Accurate prediction of PM2.5 concentrations is limited by the number and the data quality of air quality monitoring stations. In Taiwan, the spatial and temporal data of PM2.5 concentrations are measured by 77 national air quality monitoring stations (built by Taiwan EPA). However, the national stations are costly and scarce because of the highly precise instrument and their size. Therefore, many places are still out of coverage of the monitoring network. Recently, under the framework of IoTs, there are hundreds of portable air quality sensors called "AirBox" developed jointly by the Taiwan local government and a private company. By virtue of its low price and portability, the AirBox can provide a higher resolution of space-time PM2.5 measurement. However, the spatiotemporal distribution is different between AirBox and EPA stations, and data quality and accuracy of AirBox is poorer than national air quality monitoring stations. Thus, to integrate the heterogeneous PM2.5 data, the data fusion technique should be used before further analysis. In this study, we propose a new data fusion method called multi-sensor space-time data fusion framework. It is based on the Optimum Linear Data Fusion theory and integrating with a multi-time step Kriging method for spatial-temporal estimation. The method is used to do heterogeneous data fusion from different sources and data qualities. It is able to improve the estimation of PM2.5 concentration in space and time. Results have shown that by combining PM2.5 concentration data from 1176 low-cost AirBoxes as additional information in our model, the estimation of spatial-temporal PM2.5 concentration becomes better and more reasonable. The r2 of the validation regression model is 0.89. Under the approach proposed in this study, we made the information of the micro-sensors more reliable and improved the higher spatial-temporal resolution of air quality monitoring. It could provide very useful information for better spatial-temporal data analysis and further environmental management, such as air pollution source localization, health risk assessment, and micro-scale air pollution analysis.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Material Particulado/análise , Análise Espaço-Temporal , Taiwan
2.
Sci Rep ; 10(1): 20021, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208858

RESUMO

An ongoing novel coronavirus outbreak (COVID-19) started in Wuhan, China, in December 2019. Currently, the spatiotemporal epidemic transmission, prediction, and risk are insufficient for COVID-19 but we urgently need relevant information globally. We have developed a novel two-stage simulation model to simulate the spatiotemporal changes in the number of cases and estimate the future worldwide risk. Simulation results show that if there is no specific medicine for it, it will form a global pandemic. Taiwan, South Korea, Hong Kong, Japan, Thailand, and the United States are the most vulnerable. The relationship between each country's vulnerability and days before the first imported case occurred shows an exponential decrease. We successfully predicted the outbreak of South Korea, Japan, and Italy in the early stages of the global pandemic based on the information before February 12, 2020. The development of the epidemic is now earlier than we expected. However, the trend of spread is similar to our estimation.


Assuntos
COVID-19/epidemiologia , Modelos Estatísticos , Pandemias/estatística & dados numéricos , COVID-19/transmissão , Humanos , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA