Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 142(25): 2159-2174, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37616559

RESUMO

ABSTRACT: Activated Notch signaling is highly prevalent in T-cell acute lymphoblastic leukemia (T-ALL), but pan-Notch inhibitors showed excessive toxicity in clinical trials. To find alternative ways to target Notch signals, we investigated cell division cycle 73 (Cdc73), which is a Notch cofactor and key component of the RNA polymerase-associated transcriptional machinery, an emerging target in T-ALL. Although we confirmed previous work that CDC73 interacts with NOTCH1, we also found that the interaction in T-ALL was context-dependent and facilitated by the transcription factor ETS1. Using mouse models, we showed that Cdc73 is important for Notch-induced T-cell development and T-ALL maintenance. Mechanistically, chromatin and nascent gene expression profiling showed that Cdc73 intersects with Ets1 and Notch at chromatin within enhancers to activate expression of known T-ALL oncogenes through its enhancer functions. Cdc73 also intersects with these factors within promoters to activate transcription of genes that are important for DNA repair and oxidative phosphorylation through its gene body functions. Consistently, Cdc73 deletion induced DNA damage and apoptosis and impaired mitochondrial function. The CDC73-induced DNA repair expression program co-opted by NOTCH1 is more highly expressed in T-ALL than in any other cancer. These data suggest that Cdc73 might induce a gene expression program that was eventually intersected and hijacked by oncogenic Notch to augment proliferation and mitigate the genotoxic and metabolic stresses of elevated Notch signaling. Our report supports studying factors such as CDC73 that intersect with Notch to derive a basic scientific understanding on how to combat Notch-dependent cancers without directly targeting the Notch complex.


Assuntos
5'-Nucleotidase , Leucemia de Células T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animais , Camundongos , Linhagem Celular Tumoral , Cromatina , Dano ao DNA/genética , Leucemia de Células T/genética , Leucemia de Células T/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Fatores de Transcrição/genética , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo
2.
Immunity ; 43(5): 870-83, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26522984

RESUMO

Pan-NOTCH inhibitors are poorly tolerated in clinical trials because NOTCH signals are crucial for intestinal homeostasis. These inhibitors might also promote cancer because NOTCH can act as a tumor suppressor. We previously reported that the PIAS-like coactivator ZMIZ1 is frequently co-expressed with activated NOTCH1 in T cell acute lymphoblastic leukemia (T-ALL). Here, we show that similar to Notch1, Zmiz1 was important for T cell development and controlled the expression of certain Notch target genes, such as Myc. However, unlike Notch, Zmiz1 had no major role in intestinal homeostasis or myeloid suppression. Deletion of Zmiz1 impaired the initiation and maintenance of Notch-induced T-ALL. Zmiz1 directly interacted with Notch1 via a tetratricopeptide repeat domain at a special class of Notch-regulatory sites. In contrast to the Notch cofactor Maml, which is nonselective, Zmiz1 was selective. Thus, targeting the NOTCH1-ZMIZ1 interaction might combat leukemic growth while avoiding the intolerable toxicities of NOTCH inhibitors.


Assuntos
Leucemia/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Receptor Notch1/metabolismo , Linfócitos T/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Humanos , Células Jurkat , Leucemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Linfócitos T/patologia
3.
Clin Exp Ophthalmol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937978

RESUMO

BACKGROUND: Paediatric vitreoretinal pathology is distinct from adult cases in both presentation and surgical planning. Here we aim to report the aetiology and epidemiology in children 0-18 years requiring vitreoretinal surgery at a major tertiary paediatric hospital in Queensland, Australia. METHODS: Retrospective review of cases requiring vitreoretinal surgery between May 2015 and October 2022 was conducted. Demographics, ocular and medical history, surgical pathology, procedures performed, and epidemiology data were retrieved. Patients were grouped into three main aetiologies: traumatic, syndromic, or secondary. RESULTS: A total of 124 patients, the majority male (87, 70.2%) with a mean age of 10.3 years underwent vitreoretinal surgery. Trauma accounted for 32.3% of cases requiring surgery of which 47% were due to a penetrating eye injury. 35.5% were associated with a syndromic cause with common aetiology including coats, congenital cataract, sticklers, and retinopathy of prematurity. 32.3% developed secondary pathology and retinal detachment was the primary cause for surgery (55%). The average time from symptom onset to presentation was 30 days (SD 56.88) with patients living an average of 306.2 km (SD 558.9) away from the Queensland Children's Hospital. Older age was significantly associated with increased days to presentation in the traumatic group (p < 0.05). CONCLUSIONS: This study provides an insight into the aetiology and epidemiology of paediatric vitreoretinal presentations in Queensland, Australia.

4.
Ophthalmology ; 128(11): 1549-1560, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33892047

RESUMO

PURPOSE: To report the relative frequencies of childhood and early onset glaucoma subtypes and their genetic findings in a large single cohort. DESIGN: Retrospective clinical and molecular study. PARTICIPANTS: All individuals with childhood glaucoma (diagnosed 0 to <18 years) and early onset glaucoma (diagnosed 18 to <40 years) referred to a national disease registry. METHODS: We retrospectively reviewed the referrals of all individuals with glaucoma diagnosed at <40 years of age recruited to the Australian and New Zealand Registry of Advanced Glaucoma (ANZRAG). Subtypes of glaucoma were determined using the Childhood Glaucoma Research Network (CGRN) classification system. DNA extracted from blood or saliva samples underwent sequencing of genes associated with glaucoma. MAIN OUTCOME MEASURES: The phenotype and genotype distribution of glaucoma diagnosed at <40 years of age. RESULTS: A total of 290 individuals (533 eyes) with childhood glaucoma and 370 individuals (686 eyes) with early onset glaucoma were referred to the ANZRAG. Primary glaucoma was the most prevalent condition in both cohorts. In the childhood cohort, 57.6% of individuals (167/290, 303 eyes) had primary congenital glaucoma (PCG), and 19.3% (56/290, 109 eyes) had juvenile open-angle glaucoma. Juvenile open-angle glaucoma constituted 73.2% of the early onset glaucoma cohort (271/370, 513 eyes). Genetic testing in probands resulted in a diagnostic yield of 24.7% (125/506) and a reclassification of glaucoma subtype in 10.4% of probands (13/125). The highest molecular diagnostic rate was achieved in probands with glaucoma associated with nonacquired ocular anomalies (56.5%). Biallelic variants in CYP1B1 (n = 29, 23.2%) and heterozygous variants in MYOC (n = 24, 19.2%) and FOXC1 (n = 21, 16.8%) were most commonly reported among probands with a molecular diagnosis. Biallelic CYP1B1 variants were reported in twice as many female individuals as male individuals with PCG (66.7% vs. 33.3%, P = 0.02). CONCLUSIONS: We report on the largest cohort of individuals with childhood and early onset glaucoma from Australasia using the CGRN classification. Primary glaucoma was most prevalent. Genetic diagnoses ascertained in 24.7% of probands supported clinical diagnoses and genetic counseling. International collaborative efforts are required to identify further genes because the majority of individuals still lack a clear molecular diagnosis.


Assuntos
Proteínas do Olho/genética , Perfil Genético , Glaucoma/classificação , Pressão Intraocular/fisiologia , Mutação , Sistema de Registros , Adolescente , Austrália/epidemiologia , Criança , Pré-Escolar , Proteínas do Olho/metabolismo , Feminino , Testes Genéticos , Genótipo , Glaucoma/epidemiologia , Glaucoma/genética , Humanos , Lactente , Recém-Nascido , Masculino , Nova Zelândia/epidemiologia , Linhagem , Fenótipo , Estudos Retrospectivos
5.
Blood ; 132(12): 1279-1292, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30076146

RESUMO

Notch1 signaling must elevate to high levels in order to drive the proliferation of CD4-CD8- double-negative (DN) thymocytes and progression to the CD4+CD8+ double-positive (DP) stage through ß-selection. During this critical phase of pre-T-cell development, which is also known as the DN-DP transition, it is unclear whether the Notch1 transcriptional complex strengthens its signal output as a discrete unit or through cofactors. We previously showed that the protein inhibitor of activated STAT-like coactivator Zmiz1 is a context-dependent cofactor of Notch1 in T-cell leukemia. We also showed that withdrawal of Zmiz1 generated an early T-lineage progenitor (ETP) defect. Here, we show that this early defect seems inconsistent with loss-of-Notch1 function. In contrast, at the later pre-T-cell stage, withdrawal of Zmiz1 impaired the DN-DP transition by inhibiting proliferation, like withdrawal of Notch. In pre-T cells, but not ETPs, Zmiz1 cooperatively regulated Notch1 target genes Hes1, Lef1, and Myc. Enforced expression of either activated Notch1 or Myc partially rescued the Zmiz1-deficient DN-DP defect. We identified residues in the tetratricopeptide repeat (TPR) domain of Zmiz1 that bind Notch1. Mutating only a single residue impaired the Zmiz1-Notch1 interaction, Myc induction, the DN-DP transition, and leukemic proliferation. Similar effects were seen using a dominant-negative TPR protein. Our studies identify stage-specific roles of Zmiz1. Zmiz1 is a context-specific cofactor for Notch1 during Notch/Myc-dependent thymocyte proliferation, whether normal or malignant. Finally, we highlight a vulnerability in leukemic cells that originated from a developmentally important Zmiz1-Notch1 interaction that is hijacked during transformation from normal pre-T cells.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leucemia de Células T/patologia , Receptor Notch1/metabolismo , Linfócitos T/patologia , Timo/patologia , Animais , Proliferação de Células , Deleção de Genes , Regulação Leucêmica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Leucemia de Células T/genética , Leucemia de Células T/metabolismo , Camundongos , Modelos Moleculares , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Ligação a RNA , Receptor Notch1/genética , Linfócitos T/metabolismo , Timo/metabolismo
6.
Blood ; 139(16): 2418-2420, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35446377
7.
Blood ; 128(18): 2229-2240, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27670423

RESUMO

Activating NOTCH1 mutations are frequent in human T-cell acute lymphoblastic leukemia (T-ALL) and Notch inhibitors (γ-secretase inhibitors [GSIs]) have produced responses in patients with relapsed, refractory disease. However, sustained responses, although reported, are uncommon, suggesting that other pathways can substitute for Notch in T-ALL. To address this possibility, we first generated KrasG12D transgenic mice with T-cell-specific expression of the pan-Notch inhibitor, dominant-negative Mastermind (DNMAML). These mice developed leukemia, but instead of accessing alternative oncogenic pathways, the tumor cells acquired Notch1 mutations and subsequently deleted DNMAML, reinforcing the notion that activated Notch1 is particularly transforming within the context of T-cell progenitors. We next took a candidate approach to identify oncogenic pathways downstream of Notch, focusing on Myc and Akt, which are Notch targets in T-cell progenitors. KrasG12D mice transduced with Myc developed T-ALLs that were GSI-insensitive and lacked Notch1 mutations. In contrast, KrasG12D mice transduced with myristoylated AKT developed GSI-sensitive T-ALLs that acquired Notch1 mutations. Thus, Myc can substitute for Notch1 in leukemogenesis, whereas Akt cannot. These findings in primary tumors extend recent work using human T-ALL cell lines and xenografts and suggest that the Notch/Myc signaling axis is of predominant importance in understanding both the selective pressure for Notch mutations in T-ALL and response and resistance of T-ALL to Notch pathway inhibitors.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogênicas c-myc/genética , Receptor Notch1/genética , Animais , Western Blotting , Modelos Animais de Doenças , Citometria de Fluxo , Camundongos , Camundongos Transgênicos , Mutação , Reação em Cadeia da Polimerase em Tempo Real
8.
Adv Exp Med Biol ; 1066: 355-394, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30030836

RESUMO

Notch is commonly activated in lymphoid malignancies through ligand-independent and ligand-dependent mechanisms. In T-cell acute lymphoblastic leukemia/lymphoma (T-ALL), ligand-independent activation predominates. Negative Regulatory Region (NRR) mutations trigger supraphysiological Notch1 activation by exposing the S2 site to proteolytic cleavage in the absence of ligand. Subsequently, cleavage at the S3 site generates the activated form of Notch, intracellular Notch (ICN). In contrast to T-ALL, in mature lymphoid neoplasms such as chronic lymphocytic leukemia (CLL), the S2 cleavage site is exposed through ligand-receptor interactions. Thus, agents that disrupt ligand-receptor interactions might be useful for treating these malignancies. Notch activation can be enhanced by mutations that delete the C-terminal proline (P), glutamic acid (E), serine (S), and threonine (T) (PEST) domain. These mutations do not activate the Notch pathway per se, but rather impair degradation of ICN. In this chapter, we review the mechanisms of Notch activation and the importance of Notch for the genesis and maintenance of lymphoid malignancies. Unfortunately, targeting the Notch pathway with pan-Notch inhibitors in clinical trials has proven challenging. These clinical trials have encountered dose-limiting on-target toxicities and primary resistance. Strategies to overcome these challenges have emerged from the identification and improved understanding of direct oncogenic Notch target genes. Other strategies have arisen from new insights into the "nuclear context" that selectively directs Notch functions in lymphoid cancers. This nuclear context is created by factors that co-bind ICN at cell-type specific transcriptional regulatory elements. Disrupting the functions of these proteins or inhibiting downstream oncogenic pathways might combat cancer without the intolerable side effects of pan-Notch inhibition.


Assuntos
Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Animais , Ensaios Clínicos como Assunto , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Receptor Notch1/genética
9.
Genes Dev ; 24(21): 2395-407, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20935071

RESUMO

Notch signaling regulates myriad cellular functions by activating transcription, yet how Notch selectively activates different transcriptional targets is poorly understood. The core Notch transcriptional activation complex can bind DNA as a monomer, but it can also dimerize on DNA-binding sites that are properly oriented and spaced. However, the significance of Notch dimerization is unknown. Here, we show that dimeric Notch transcriptional complexes are required for T-cell maturation and leukemic transformation but are dispensable for T-cell fate specification from a multipotential precursor. The varying requirements for Notch dimerization result from the differential sensitivity of specific Notch target genes. In particular, c-Myc and pre-T-cell antigen receptor α (Ptcra) are dimerization-dependent targets, whereas Hey1 and CD25 are not. These findings identify functionally important differences in the responsiveness among Notch target genes attributable to the formation of higher-order complexes. Consequently, it may be possible to develop a new class of Notch inhibitors that selectively block outcomes that depend on Notch dimerization (e.g., leukemogenesis).


Assuntos
Multimerização Proteica , Receptor Notch1/química , Receptor Notch1/metabolismo , Linfócitos T/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Citometria de Fluxo , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptor Notch1/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Linfócitos T/citologia , Transcrição Gênica
10.
Blood ; 135(12): 887-889, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32191800
11.
J Immunol ; 195(1): 31-5, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26002977

RESUMO

Ras GTPase-activating proteins (RasGAPs) inhibit signal transduction initiated through the Ras small GTP-binding protein. However, which members of the RasGAP family act as negative regulators of T cell responses is not completely understood. In this study, we investigated potential roles for the RasGAPs RASA1 and neurofibromin 1 (NF1) in T cells through the generation and analysis of T cell-specific RASA1 and NF1 double-deficient mice. In contrast to mice lacking either RasGAP alone in T cells, double-deficient mice developed T cell acute lymphoblastic leukemia/lymphoma, which originated at an early point in T cell development and was dependent on activating mutations in the Notch1 gene. These findings highlight RASA1 and NF1 as cotumor suppressors in the T cell lineage.


Assuntos
Neurofibromina 1/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptor Notch1/genética , Proteína p120 Ativadora de GTPase/genética , Animais , Deleção de Genes , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Mutação , Neurofibromina 1/deficiência , Neurofibromina 1/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Receptor Notch1/imunologia , Transdução de Sinais , Baço/imunologia , Baço/patologia , Análise de Sobrevida , Linfócitos T/imunologia , Linfócitos T/patologia , Timo/imunologia , Timo/patologia , Fatores de Tempo , Proteína p120 Ativadora de GTPase/deficiência , Proteína p120 Ativadora de GTPase/imunologia
12.
Genes Dev ; 23(14): 1665-76, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19605688

RESUMO

Precise control of the timing and magnitude of Notch signaling is essential for the normal development of many tissues, but the feedback loops that regulate Notch are poorly understood. Developing T cells provide an excellent context to address this issue. Notch1 signals initiate T-cell development and increase in intensity during maturation of early T-cell progenitors (ETP) to the DN3 stage. As DN3 cells undergo beta-selection, during which cells expressing functionally rearranged TCRbeta proliferate and differentiate into CD4(+)CD8(+) progeny, Notch1 signaling is abruptly down-regulated. In this report, we investigate the mechanisms that control Notch1 expression during thymopoiesis. We show that Notch1 and E2A directly regulate Notch1 transcription in pre-beta-selected thymocytes. Following successful beta-selection, pre-TCR signaling rapidly inhibits Notch1 transcription via signals that up-regulate Id3, an E2A inhibitor. Consistent with a regulatory role for Id3 in Notch1 down-regulation, post-beta-selected Id3-deficient thymocytes maintain Notch1 transcription, whereas enforced Id3 expression decreases Notch1 expression and abrogates Notch1-dependent T-cell survival. These data provide new insights into Notch1 regulation in T-cell progenitors and reveal a direct link between pre-TCR signaling and Notch1 expression during thymocyte development. Our findings also suggest new strategies for inhibiting Notch1 signaling in pathologic conditions.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/fisiologia , Receptor Notch1/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Regulação para Baixo , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Inibidoras de Diferenciação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/metabolismo , Receptor Notch1/genética
13.
Curr Opin Hematol ; 23(4): 362-70, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27135981

RESUMO

PURPOSE OF REVIEW: This article highlights recent discoveries about Notch activation and its oncogenic functions in lymphoid malignancies, and discusses the therapeutic potential of Notch inhibition. RECENT FINDINGS: NOTCH mutations arise in a broad spectrum of lymphoid malignancies and are increasingly scrutinized as putative therapeutic targets. In T-cell acute lymphoblastic leukemia (T-ALL), NOTCH1 mutations affect the extracellular negative regulatory region and lead to constitutive Notch activation, although mutated receptors remain sensitive to Notch ligands. Other NOTCH1 mutations in T-ALL and NOTCH1/2 mutations in multiple B-cell malignancies truncate the C-terminal proline (P), glutamic acid (E), serine (S), threonine (T)-rich (PEST) domain, leading to decreased Notch degradation after ligand-mediated activation. Thus, targeting Notch ligand-receptor interactions could provide therapeutic benefits. In addition, we discuss recent reports on clinical testing of Notch inhibitors in T-ALL that influenced contemporary thinking on the challenges of targeting Notch in cancer. We review advances in the laboratory to address these challenges in regards to drug targets, the Notch-driven metabolome, and the sophisticated protein-protein interactions at Notch-dependent superenhancers that underlie oncogenic Notch functions. SUMMARY: Notch signaling is a recurrent oncogenic pathway in multiple T- and B-cell lymphoproliferative disorders. Understanding the complexity and consequences of Notch activation is critical to define optimal therapeutic strategies targeting the Notch pathway.


Assuntos
Transformação Celular Neoplásica/metabolismo , Transtornos Linfoproliferativos/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Biomarcadores , Transformação Celular Neoplásica/genética , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Transtornos Linfoproliferativos/tratamento farmacológico , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/patologia , Terapia de Alvo Molecular , Ligação Proteica , Receptores Notch/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/patologia
15.
Ophthalmology ; 122(11): 2216-22, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26315044

RESUMO

PURPOSE: To evaluate the long-term effectiveness and safety of mitomycin C (MMC)-augmented trabeculectomy undertaken within the first 2 years of life for the surgical management of glaucoma. DESIGN: Retrospective, consecutive, noncomparative case series. PARTICIPANTS: All children who underwent MMC-augmented trabeculectomy within 2 years of birth between May 2002 and November 2012. METHODS: The medical records of 40 consecutive eyes of 26 children who underwent surgery by a single surgeon were reviewed. Data collected during routine clinical care were analyzed. MAIN OUTCOME MEASURES: Assessment of clinical outcomes included intraocular pressure (IOP), final visual acuity, bleb morphology, surgical complications (early and late), postoperative interventions, and further glaucoma surgery performed. Surgical success was defined as final IOP of 5 mmHg or more and of 21 mmHg or less, with anti-glaucoma medications (qualified success) and without (complete success), stable ocular dimensions and optic disc cupping, and no further glaucoma surgery (including needling) or loss of light perception. Surgical outcomes were evaluated using Kaplan-Meier life table analysis. RESULTS: Forty eyes of 26 children were studied over a mean follow-up period of 62.8 months. Most cases (80%) were of primary congenital glaucoma after failed goniotomy surgery. Cumulative probabilities of survival at 1, 5, and 7 years were 78%, 67%, and 60%, respectively. Of eyes regarded as successful, 96% (25/26 eyes) had controlled IOP without topical medication and 44% achieved visual acuity of 20/40 or better. In only 1 of the 40 eyes did a cystic avascular bleb develop, with all the other eyes being non-cystic in nature (diffuse and elevated or flat) at final follow-up. Sixty-four percent (9/14 eyes) of cases regarded as failures ultimately underwent glaucoma drainage device implantation. CONCLUSIONS: A contemporary pediatric trabeculectomy technique augmented with MMC is an effective procedure in the management of glaucoma within the first 2 years of life, as shown by the successful long-term outcomes and low incidence of sight-threatening complications. Trabeculectomy after failed goniotomy surgery or as a primary surgical intervention may offer a phakic infant with glaucoma an excellent opportunity to achieve long-term control of IOP without medications and may be associated with optimal visual outcomes.


Assuntos
Alquilantes/administração & dosagem , Glaucoma/cirurgia , Mitomicina/administração & dosagem , Malha Trabecular/cirurgia , Trabeculectomia/métodos , Anti-Hipertensivos/administração & dosagem , Terapia Combinada , Túnica Conjuntiva/efeitos dos fármacos , Feminino , Seguimentos , Glaucoma/congênito , Glaucoma/fisiopatologia , Humanos , Lactente , Pressão Intraocular/fisiologia , Masculino , Complicações Pós-Operatórias , Estudos Retrospectivos , Malha Trabecular/fisiopatologia , Resultado do Tratamento , Acuidade Visual/fisiologia
16.
Blood ; 121(6): 905-17, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23115273

RESUMO

The leukemia stem cell (LSC) hypothesis proposes that a subset of cells in the bulk leukemia population propagates the leukemia.We tested the LSC hypothesis in a mouse model of Notch-induced T-cell acute lymphoblastic leukemia (T-ALL) in which the tumor cells were largely CD4+ CD8+ T cells. LSC activity was enriched but rare in the CD8+ CD4 HSA(hi) immature single-positive T-cell subset. Although our murine T-ALL model relies on transduction of HSCs, we were unable to isolate Notch-activated HSCs to test for LSC activity. Further analysis showed that Notch activation in HSCs caused an initial expansion of hematopoietic and T-cell progenitors and loss of stem cell quiescence, which was followed by progressive loss of long-term HSCs and T-cell production over several weeks. Similar results were obtained in a conditional transgenic model in which Notch activation is induced in HSCs by Cre recombinase. We conclude that although supraphysiologic Notch signaling in HSCs promotes LSC activity in T-cell progenitors, it extinguishes self-renewal of LT-HSCs. These results provide further evidence for therapeutically targeting T-cell progenitors in T-ALL while also underscoring the need to tightly regulate Notch signaling to expand normal HSC populations for clinical applications.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Células 3T3 , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Proliferação de Células , Células Cultivadas , Citometria de Fluxo , Fluoruracila/farmacologia , Células HEK293 , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , Células-Tronco Neoplásicas/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/fisiopatologia , Receptores Notch/genética , Receptores Notch/fisiologia , Linfócitos T/metabolismo , Linfócitos T/patologia
17.
bioRxiv ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39005408

RESUMO

Angiogenesis is a highly coordinated process involving the control of various endothelial cell behaviors. Mechanisms for transcription factor involvement in the regulation of endothelial cell dynamics and angiogenesis have become better understood, however much remains unknown, especially the role of non-DNA binding transcriptional cofactors. Here, we show that Zmiz1, a transcription cofactor, is enriched in the endothelium and critical for embryonic vascular development, postnatal retinal angiogenesis, and pathological angiogenesis in oxygen induced retinopathy (OIR). In mice, endothelial cell-specific deletion of Zmiz1 during embryogenesis led to lethality due to abnormal angiogenesis and vascular defects. Inducible endothelial cell-specific ablation of Zmiz1 postnatally resulted in impaired retinal vascular outgrowth, decreased vascular density, and increased vessel regression. In addition, angiogenic sprouting in the superficial and deep layers of the retina was markedly reduced. Correspondingly, vascular sprouting in fibrin bead assays was significantly reduced in the absence of Zmiz1, while further in vitro and in vivo evidence also suggested deficits in EC migration. In agreement with the defective sprouting angiogenesis phenotype, gene expression analysis of isolated retinal endothelial cells revealed downregulation of tip-cell enriched genes upon inactivation of Zmiz1. Lastly, our study suggested that endothelial Zmiz1 is critical for intraretinal revascularization following hypoxia exposure in the OIR model. Taken together, these findings begin to define the previously unspecified role of endothelial Zmiz1 in physiological and pathological angiogenesis.

18.
PLoS One ; 19(5): e0302926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718095

RESUMO

Zinc Finger MIZ-Type Containing 1 (Zmiz1), also known as ZIMP10 or RAI17, is a transcription cofactor and member of the Protein Inhibitor of Activated STAT (PIAS) family of proteins. Zmiz1 is critical for a variety of biological processes including vascular development. However, its role in the lymphatic vasculature is unknown. In this study, we utilized human dermal lymphatic endothelial cells (HDLECs) and an inducible, lymphatic endothelial cell (LEC)-specific Zmiz1 knockout mouse model to investigate the role of Zmiz1 in LECs. Transcriptional profiling of ZMIZ1-deficient HDLECs revealed downregulation of genes crucial for lymphatic vessel development. Additionally, our findings demonstrated that loss of Zmiz1 results in reduced expression of proliferation and migration genes in HDLECs and reduced proliferation and migration in vitro. We also presented evidence that Zmiz1 regulates Prox1 expression in vitro and in vivo by modulating chromatin accessibility at Prox1 regulatory regions. Furthermore, we observed that loss of Zmiz1 in mesenteric lymphatic vessels significantly reduced valve density. Collectively, our results highlight a novel role of Zmiz1 in LECs and as a transcriptional regulator of Prox1, shedding light on a previously unknown regulatory factor in lymphatic vascular biology.


Assuntos
Proliferação de Células , Células Endoteliais , Proteínas de Homeodomínio , Vasos Linfáticos , Fatores de Transcrição , Proteínas Supressoras de Tumor , Animais , Humanos , Camundongos , Movimento Celular/genética , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Linfangiogênese/genética , Vasos Linfáticos/metabolismo , Vasos Linfáticos/citologia , Camundongos Knockout , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
19.
J Glaucoma ; 32(6): e66-e68, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37054434

RESUMO

PRCIS: Transscleral diode laser cyclophotocoagulation may trigger the development of proliferative vitreoretinopathy. Our article demonstrates one such case leading to tractional macula-off retinal detachment in a child with aphakic glaucoma. PURPOSE: The purpose of this article is to describe a case of proliferative vitreoretinopathy (PVR) developing subsequent to transscleral diode laser cyclophotocoagulation (cyclodiode) in a pediatric patient with aphakic glaucoma. PVR most commonly occurs following rhegmatogenous retinal detachment repair; however, to the best of our knowledge, it has never been reported to appear after cyclodiode. METHODS: Retrospective evaluation of case presentation and intraoperative findings. RESULTS: A 13-year-old girl with aphakic glaucoma presented 4 months after cyclodiode of the right eye with a retrolental fibrovascular membrane and anterior PVR. The PVR extended posteriorly over the next month, after which the patient developed a tractional macula-off retinal detachment. Pars Plana vitrectomy was performed, confirming dense anterior and posterior PVR. A review of the literature suggests that an inflammatory cascade, similar to that seen in PVR development following rhegmatogenous retinal detachment, may occur from the destruction of the ciliary body by cyclodiode. As a result, fibrous transformation may occur, likely accounting for the cause of PVR development in this case. CONCLUSION: The pathophysiology of PVR development remains unclear. This case demonstrates that PVR may occur following cyclodiode and should be considered during postoperative monitoring after this procedure.


Assuntos
Glaucoma , Descolamento Retiniano , Vitreorretinopatia Proliferativa , Feminino , Humanos , Criança , Adolescente , Vitreorretinopatia Proliferativa/diagnóstico , Vitreorretinopatia Proliferativa/etiologia , Vitreorretinopatia Proliferativa/cirurgia , Descolamento Retiniano/diagnóstico , Descolamento Retiniano/etiologia , Descolamento Retiniano/cirurgia , Estudos Retrospectivos , Corpo Ciliar/cirurgia , Pressão Intraocular , Glaucoma/diagnóstico , Glaucoma/etiologia , Glaucoma/cirurgia , Vitrectomia/efeitos adversos , Vitrectomia/métodos
20.
bioRxiv ; 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37503058

RESUMO

Zinc Finger MIZ-Type Containing 1 (Zmiz1), also known as ZIMP10 or RAI17, is a transcription cofactor and member of the Protein Inhibitor of Activated STAT (PIAS) family of proteins. Zmiz1 is critical for a variety of biological processes including vascular development. However, its role in the lymphatic vasculature is unknown. In this study, we utilized human dermal lymphatic endothelial cells (HDLECs) and an inducible, lymphatic endothelial cell (LEC)-specific Zmiz1 knockout mouse model to investigate the role of Zmiz1 in LECs. Transcriptional profiling of Zmiz1-deficient HDLECs revealed downregulation of genes crucial for lymphatic vessel development. Additionally, our findings demonstrated that loss of Zmiz1 results in reduced expression of proliferation and migration genes in HDLECs and reduced proliferation and migration in vitro. We also presented evidence that Zmiz1 regulates Prox1 expression in vitro and in vivo by modulating chromatin accessibility at Prox1 regulatory regions. Furthermore, we observed that loss of Zmiz1 in mesenteric lymphatic vessels significantly reduced valve density. Collectively, our results highlight a novel role of Zmiz1 in LECs and as a transcriptional regulator of Prox1, shedding light on a previously unknown regulatory factor in lymphatic vascular biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA