Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Learn Behav ; 48(4): 401-410, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32221844

RESUMO

Predation can be a very strong selective pressure on prey. Many studies have shown the existence of innate anti-predator responses, mostly in the early developmental stages of juvenile vertebrates. Learning to recognize predators is another possible defensive resource, but such a method involves a high death risk. There is evidence that prenatal learning exists in animals but few studies have explicitly tested for embryonic learning. The aim of this study was to test innate and learned predator recognition in cuttlefish embryos. For this, naïve embryos were exposed to chemical and visual cues emanating from predators, non-predators, and ink. Their response was assessed by measuring their ventilation rate (VR). We first show that VR decreased in response to both visual and chemical predatory cues and ink but not to non-predatory cues. Second, we show that when non-predatory cues (visual or chemical) are paired with predatory cues or ink for several days, embryonic VR significantly decreased. Such a response is likely adaptive, especially in a translucent egg, since it results in reduced movement and hence may lower the risk of detection by visual predators. This freezing-like behavior may also reduce the bioelectric field, thus lessening the predation risk by non-visual foragers. Our results report that cuttlefish embryos had an innate capacity to differentiate between harmless and harmful chemical and visual cues. They were also capable of learning to respond to harmless cues when they were paired with danger (predator or ink) based on conditioning. The combination of these behavioral mechanisms is an example of the early adaptability of cephalopods. Such behavioral plasticity may give the newly hatched cuttlefish a selective advantage when dealing with either known or unfamiliar threats. Nevertheless, more experiments are needed to test the efficiency of the embryos' response faced with known or new predators.


Assuntos
Decapodiformes , Aprendizagem , Animais , Sinais (Psicologia) , Comportamento Predatório , Reconhecimento Psicológico
2.
Anim Cogn ; 22(2): 163-168, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30603931

RESUMO

Number sense is a key cognitive function in animals. The biological functions of number discrimination have a wide range, including the selection of prey and social interaction. In a previous study, we have shown that cuttlefish are able to distinguish numerical differences among various integers, including 1 vs. 2, 2 vs. 3, 3 vs. 4, and 4 vs. 5. However, it is not known whether cuttlefish are able to discriminate various fractions, that is, various non-integer numbers. In addition, no study on invertebrates has examined fraction number sense. Using the active preying behavior of cuttlefish (Sepia pharaonis), we investigated the spontaneous preference for larger quantity by presenting two-alternative choice between 1 vs. 1.5, 1.5 vs. 2, 2 vs. 2.5, and 2.5 vs. 3. In this context, the quantity1.5 is composed of one large shrimp and one small shrimp, in which the size of the small shrimp is one-half of that of the large shrimp. The result shows that the cuttlefish chose larger quantity in the first three pairs, but they could not distinguish the pair 2.5 vs. 3. Despite that the absolute differences in these pairs are the same (0.5), the relative differences in these pairs decrease (0.5, 0.33, 0.25, and 0.2, respectively). This implies that the perceived difference in quantity is proportional to the initial quantity (Weber's law). Although the present study does not truly differentiate the number difference from the quantity difference, this result does raise the possibility that cuttlefish may be equipped with the primitive concept of fractions, and if so, the perceived just noticeable difference is similar for both integer and fraction number discrimination.


Assuntos
Cognição , Sepia , Animais
3.
Dev Psychobiol ; 61(7): 1014-1021, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31172508

RESUMO

Embryos perceive environmental stimuli, thanks to their almost mature sensory systems. In cuttlefish, the embryonic development of Sepia officinalis and Sepia pharaonis is similar but the egg capsule transparency is different. S. officinalis' eggs are black (ink), which provide protection from predators. Conversely, those of S. pharaonis are translucent. The aim of this study was to test the visual and chemosensory perception abilities of these two cuttlefish embryos by observation of the ventilation rate (VR) before and after stimulation. Our results show that S. pharaonis responds to light at stage 22 and S. officinalis at stage 24. Conversely, S. pharaonis responds to predator odor at stage 23 and S. officinalis at stage 22. Both species are able to respond to these stimuli before hatching but do not have the same developmental schedule. Neither are the responses of the two cuttlefish exactly the same. In S. officinalis, VR increases after stimulations. In S. pharaonis, VR increases after light stimulation and decreases following the odor stimulation after stage 25. This result could reveal an ability to recognize stimuli at stage 25. The decrease could be identified as freezing-like behavior which would be more adaptive than an increase, since the embryos are visible.


Assuntos
Comportamento Animal/fisiologia , Desenvolvimento Embrionário/fisiologia , Percepção Olfatória/fisiologia , Taxa Respiratória/fisiologia , Sepia/fisiologia , Percepção Visual/fisiologia , Animais , Especificidade da Espécie
4.
J Neurosci ; 37(4): 768-780, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28123014

RESUMO

Cephalopods in nature undergo highly dynamic skin coloration changes that allow rapid camouflage and intraspecies communication. The optic lobe is thought to play a key role in controlling the expansion of the chromatophores that generate these diverse body patterns. However, the functional organization of the optic lobe and neural control of the various body patterns by the optic lobe are largely unknown. We applied electrical stimulation within the optic lobe to investigate the neural basis of body patterning in the oval squid, Sepioteuthis lessoniana Most areas in the optic lobe mediated predominately ipsilateral expansion of chromatophores present on the mantle, but not on the head and arms; furthermore, the expanded areas after electrical stimulation were positively correlated with an increase in stimulating voltage and stimulation depth. These results suggest a unilaterally dominant and vertically converged organization of the optic lobe. Furthermore, analyzing 14 of the elicited body pattern components and their corresponding stimulation sites revealed that the same components can be elicited by stimulating different parts of the optic lobe and that various subsets of these components can be coactivated by stimulating the same area. These findings suggest that many body pattern components may have multiple motor units in the optic lobe and that these are organized in a mosaic manner. The multiplicity associated with the nature of the neural controls of these components in the cephalopod brain thus reflects the versatility of the individual components during the generation of diverse body patterns. SIGNIFICANCE STATEMENT: Neural control of the dynamic body patterning of cephalopods for camouflage and intraspecies communication is a fascinating research topic. Previous studies have shown that the optic lobe is the motor command center for dynamic body patterning. However, little is known about its neural organization and the mechanisms underlying its control of body pattern generation. By electrically stimulating the optic lobe of the oval squids and observing their body pattern changes, surprisingly, we found that there is no somatotopic organization of motor units. Instead, many of these components have multiple motor units within the optic lobe and are organized in a mosaic manner. The present work reveals a novel neural control of dynamic body patterning for communication in cephalopods.


Assuntos
Padronização Corporal/fisiologia , Cromatóforos/fisiologia , Decapodiformes/fisiologia , Lobo Óptico de Animais não Mamíferos/fisiologia , Animais , Decapodiformes/anatomia & histologia , Estimulação Elétrica/métodos , Feminino , Masculino , Lobo Óptico de Animais não Mamíferos/anatomia & histologia
5.
Proc Biol Sci ; 283(1837)2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27559063

RESUMO

Identifying the amount of prey available is an important part of an animal's foraging behaviour. The risk-sensitive foraging theory predicts that an organism's foraging decisions with regard to food rewards depending upon its satiation level. However, the precise interaction between optimal risk-tolerance and satiation level remains unclear. In this study, we examined, firstly, whether cuttlefish, with one of the most highly evolved nervous system among the invertebrates, have number sense, and secondly, whether their valuation of food reward is satiation state dependent. When food such as live shrimps is present, without training, cuttlefish turn toward the prey and initiate seizure behaviour. Using this visual attack behaviour as a measure, cuttlefish showed a preference for a larger quantity when faced with two-alternative forced choice tasks (1 versus 2, 2 versus 3, 3 versus 4 and 4 versus 5). However, cuttlefish preferred the small quantity when the choice was between one live and two dead shrimps. More importantly, when the choice was between one large live shrimp and two small live shrimps (a prey size and quantity trade-off), the cuttlefish chose the large single shrimp when they felt hunger, but chose the two smaller prey when they were satiated. These results demonstrate that cuttlefish are capable of number discrimination and that their choice of prey number depends on the quality of the prey and on their appetite state. The findings also suggest that cuttlefish integrate both internal and external information when making a foraging decision and that the cost of obtaining food is inversely correlated with their satiation level, a phenomenon similar to the observation that metabolic state alters economic decision making under risk among humans.


Assuntos
Cognição , Decápodes/fisiologia , Comportamento Predatório , Animais , Decapodiformes
6.
Artigo em Inglês | MEDLINE | ID: mdl-25701389

RESUMO

We review recent research on the visual mechanisms of rapid adaptive camouflage in cuttlefish. These neurophysiologically complex marine invertebrates can camouflage themselves against almost any background, yet their ability to quickly (0.5-2 s) alter their body patterns on different visual backgrounds poses a vexing challenge: how to pick the correct body pattern amongst their repertoire. The ability of cuttlefish to change appropriately requires a visual system that can rapidly assess complex visual scenes and produce the motor responses-the neurally controlled body patterns-that achieve camouflage. Using specifically designed visual backgrounds and assessing the corresponding body patterns quantitatively, we and others have uncovered several aspects of scene variation that are important in regulating cuttlefish patterning responses. These include spatial scale of background pattern, background intensity, background contrast, object edge properties, object contrast polarity, object depth, and the presence of 3D objects. Moreover, arm postures and skin papillae are also regulated visually for additional aspects of concealment. By integrating these visual cues, cuttlefish are able to rapidly select appropriate body patterns for concealment throughout diverse natural environments. This sensorimotor approach of studying cuttlefish camouflage thus provides unique insights into the mechanisms of visual perception in an invertebrate image-forming eye.


Assuntos
Adaptação Fisiológica/fisiologia , Decapodiformes/fisiologia , Percepção Visual/fisiologia , Animais , Fenômenos Fisiológicos Oculares , Pigmentação da Pele/fisiologia
7.
Proc Natl Acad Sci U S A ; 108(22): 9148-53, 2011 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-21576487

RESUMO

Camouflage is a widespread phenomenon throughout nature and an important antipredator tactic in natural selection. Many visual predators have keen color perception, and thus camouflage patterns should provide some degree of color matching in addition to other visual factors such as pattern, contrast, and texture. Quantifying camouflage effectiveness in the eyes of the predator is a challenge from the perspectives of both biology and optical imaging technology. Here we take advantage of hyperspectral imaging (HSI), which records full-spectrum light data, to simultaneously visualize color match and pattern match in the spectral and the spatial domains, respectively. Cuttlefish can dynamically camouflage themselves on any natural substrate and, despite their colorblindness, produce body patterns that appear to have high-fidelity color matches to the substrate when viewed directly by humans or with RGB images. Live camouflaged cuttlefish on natural backgrounds were imaged using HSI, and subsequent spectral analysis revealed that most reflectance spectra of individual cuttlefish and substrates were similar, rendering the color match possible. Modeling color vision of potential di- and trichromatic fish predators of cuttlefish corroborated the spectral match analysis and demonstrated that camouflaged cuttlefish show good color match as well as pattern match in the eyes of fish predators. These findings (i) indicate the strong potential of HSI technology to enhance studies of biological coloration and (ii) provide supporting evidence that cuttlefish can produce color-coordinated camouflage on natural substrates despite lacking color vision.


Assuntos
Decapodiformes/fisiologia , Comportamento Predatório , Adaptação Fisiológica , Animais , Comportamento Animal , Padronização Corporal , Cor , Peixes , Processamento de Imagem Assistida por Computador , Modelos Estatísticos , Reconhecimento Visual de Modelos , Seleção Genética , Pigmentação da Pele , Percepção Visual
8.
Biomed Pharmacother ; 178: 117270, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39126773

RESUMO

The blood supply in the retina ensures photoreceptor function and maintains regular vision. Leber's hereditary optic neuropathy (LHON), caused by the mitochondrial DNA mutations that deteriorate complex I activity, is characterized by progressive vision loss. Although some reports indicated retinal vasculature abnormalities as one of the comorbidities in LHON, the paracrine influence of LHON-affected retinal ganglion cells (RGCs) on vascular endothelial cell physiology remains unclear. To address this, we established an in vitro model of mitochondrial complex I deficiency using induced pluripotent stem cell-derived RGCs (iPSC-RGCs) treated with a mitochondrial complex I inhibitor rotenone (Rot) to recapitulate LHON pathologies. The secretomes from Rot-treated iPSC-RGCs (Rot-iPSC-RGCs) were collected, and their treatment effect on human umbilical vein endothelial cells (HUVECs) was studied. Rot induced LHON-like characteristics in iPSC-RGCs, including decreased mitochondrial complex I activity and membrane potential, and increased mitochondrial reactive oxygen species (ROS) and apoptosis, leading to mitochondrial dysfunction. When HUVECs were exposed to conditioned media (CM) from Rot-iPSC-RGCs, the angiogenesis of HUVECs was suppressed compared to those treated with CM from control iPSC-RGCs (Ctrl-iPSC-RGCs). Angiogenesis-related proteins were altered in the secretomes from Rot-iPSC-RGC-derived CM, particularly angiopoietin, MMP-9, uPA, collagen XVIII, and VEGF were reduced. Notably, GeneMANIA analysis indicated that VEGFA emerged as the pivotal angiogenesis-related protein among the identified proteins secreted by health iPSC-RGCs but reduced in the secretomes from Rot-iPSC-RGCs. Quantitative real-time PCR and western blots confirmed the reduction of VEGFA at both transcription and translation levels, respectively. Our study reveals that Rot-iPSC-RGCs establish a microenvironment to diminish the angiogenic potential of vascular cells nearby, shedding light on the paracrine regulation of LHON-affected RGCs on retinal vasculature.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Células-Tronco Pluripotentes Induzidas , Atrofia Óptica Hereditária de Leber , Células Ganglionares da Retina , Humanos , Atrofia Óptica Hereditária de Leber/metabolismo , Atrofia Óptica Hereditária de Leber/patologia , Atrofia Óptica Hereditária de Leber/genética , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia , Meios de Cultivo Condicionados/farmacologia , Apoptose/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neovascularização Patológica/metabolismo , Angiogênese
9.
Artigo em Inglês | MEDLINE | ID: mdl-23254307

RESUMO

Cephalopods are renowned for their ability to adaptively camouflage on diverse backgrounds. Sepia officinalis camouflage body patterns have been characterized spectrally in the laboratory but not in the field due to the challenges of dynamic natural light fields and the difficulty of using spectrophotometric instruments underwater. To assess cuttlefish color match in their natural habitats, we studied the spectral properties of S. officinalis and their backgrounds on the Aegean coast of Turkey using point-by-point in situ spectrometry. Fifteen spectrometry datasets were collected from seven cuttlefish; radiance spectra from animal body components and surrounding substrates were measured at depths shallower than 5 m. We quantified luminance and color contrast of cuttlefish components and background substrates in the eyes of hypothetical di- and trichromatic fish predators. Additionally, we converted radiance spectra to sRGB color space to simulate their in situ appearance to a human observer. Within the range of natural colors at our study site, cuttlefish closely matched the substrate spectra in a variety of body patterns. Theoretical calculations showed that this effect might be more pronounced at greater depths. We also showed that a non-biological method ("Spectral Angle Mapper"), commonly used for spectral shape similarity assessment in the field of remote sensing, shows moderate correlation to biological measures of color contrast. This performance is comparable to that of a traditional measure of spectral shape similarity, hue and chroma. This study is among the first to quantify color matching of camouflaged cuttlefish in the wild.


Assuntos
Adaptação Biológica , Comportamento Animal/fisiologia , Luz , Sepia/fisiologia , Pigmentação da Pele , Animais , Cor , Sensibilidades de Contraste , Discriminação Psicológica , Meio Ambiente
10.
Anim Cogn ; 16(3): 313-20, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23100087

RESUMO

Observational learning is the ability to learn through observing others' behavior. The benefit of observational learning is apparent in that individuals can save time and energy without trial-and-error, thus enhance the chance of survival and reproduction. Cephalopods (octopus, squid, and cuttlefish) have the most sophisticated central nervous system among invertebrates, and it is conceivable that cephalopods can develop some forms of cognition. Although it has been suggested that octopuses have the capacity of observational learning, a previous study indicates that cuttlefish do not improve their predation tactics by observing conspecifics. Given that the danger avoidance is important for animals' survival, we sought to reevaluate whether cuttlefish show some form of observational learning or observational conditioning under threatening conditions. Cuttlefish (Sepia pharaonis) were divided into three groups: the Experiencer group, the Observer group, and the Control group. In the training phase, a toy submarine was remotely controlled to expel the cuttlefish from its initially preferred place to establish the threat-place association in the Experiencer group. In the Observer group, the threat-place association was established by expelling a conspecific demonstrator at the observer's initially preferred place while the observer watched the whole process from behind a transparent divider. In the Control group, the observer watched a conspecific and a static toy submarine without actual threat. In the testing phase, the choice of safe place in the absence of threat was used to probe the learning/conditioning of cuttlefish. In the Experiencer group, we found that animals chose the safe place more often than their initially preferred place after training, an indication of the association learning/conditioning. However, in the Observer group, only a subset of animals showed this threat-place association by observation, while the place preference was unchanged in the Control group. These results indicate that most cuttlefish did not learn by observing others, but individual differences exist, and some cuttlefish may have the potential of observational learning/conditioning within their cognitive capacities.


Assuntos
Decapodiformes , Comportamento Imitativo , Aprendizagem , Animais , Aprendizagem por Associação , Cognição , Condicionamento Psicológico , Comportamento Social
11.
Proc Natl Acad Sci U S A ; 107(8): 3628-33, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20133601

RESUMO

The butterfly Heliconius erato can see from the UV to the red part of the light spectrum with color vision proven from 440 to 640 nm. Its eye is known to contain three visual pigments, rhodopsins, produced by an 11-cis-3-hydroxyretinal chromophore together with long wavelength (LWRh), blue (BRh) and UV (UVRh1) opsins. We now find that H. erato has a second UV opsin mRNA (UVRh2)-a previously undescribed duplication of this gene among Lepidoptera. To investigate its evolutionary origin, we screened eye cDNAs from 14 butterfly species in the subfamily Heliconiinae and found both copies only among Heliconius. Phylogeny-based tests of selection indicate positive selection of UVRh2 following duplication, and some of the positively selected sites correspond to vertebrate visual pigment spectral tuning residues. Epi-microspectrophotometry reveals two UV-absorbing rhodopsins in the H. erato eye with lambda(max) = 355 nm and 398 nm. Along with the additional UV opsin, Heliconius have also evolved 3-hydroxy-DL-kynurenine (3-OHK)-based yellow wing pigments not found in close relatives. Visual models of how butterflies perceive wing color variation indicate this has resulted in an expansion of the number of distinguishable yellow colors on Heliconius wings. Functional diversification of the UV-sensitive visual pigments may help explain why the yellow wing pigments of Heliconius are so colorful in the UV range compared to the yellow pigments of close relatives lacking the UV opsin duplicate.


Assuntos
Borboletas/fisiologia , Visão de Cores/fisiologia , Rodopsina/fisiologia , Raios Ultravioleta , Asas de Animais/metabolismo , Animais , Sequência de Bases , Borboletas/metabolismo , Visão de Cores/genética , Evolução Molecular , Olho/metabolismo , Duplicação Gênica , Dados de Sequência Molecular , Filogenia , Pigmentação , Rodopsina/classificação , Rodopsina/genética , Seleção Genética
12.
iScience ; 26(11): 108122, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37876802

RESUMO

Previous studies have demonstrated that the size of the prey relative to the cuttlefish is important to the choice between tentacular strike and jump-on tactics. In the present study, we investigated the decision-making in the cuttlefish's tactical switch when preying on the same size prey. A servomotor system controlling the movement of a shrimp was used to elicit the cuttlefish's preying behavior. The success rate of prey capture and the kinematics of visual attack were examined systematically. The results showed that the jump-on behavior appeared mostly after a miss attack by previous tentacular strike on a moving shrimp. Compared with a visual attack with tentacles, the jump-on tactic has over a shorter attacking distance and wider attacking angles. Thus, these two different preying tactics have different operating ranges relative to the prey. More importantly, the cuttlefish can adjust their preying tactics adaptively depending on their prior preying experience.

13.
Biol Lett ; 8(5): 740-3, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22791707

RESUMO

Although cuttlefish are capable of showing diverse camouflage body patterns against a variety of background substrates, whether they show background preference when given a choice of substrates is not well known. In this study, we characterized the background choice of post-embryonic cuttlefish (Sepia pharaonis) and examined the effects of rearing visual environments on their background preferences. Different rearing backgrounds (enriched, uniformly grey and checkerboard) were used to raise cuttlefish from eggs or hatchlings, and four sets of two-background-choice experiments (differences in contrast, shape, size and side) were conducted at day 1 and weeks 4, 8 and 12 post-hatch. Cuttlefish reared in the enriched environment preferred high-contrast backgrounds at all post-embryonic stages. In comparison, those reared in the impoverished environments (uniformly grey and checkerboard) had either reversed or delayed high-contrast background preference. In addition, cuttlefish raised on the uniformly grey background, exposed to a checkerboard briefly (0.5 or 3 h) at week 4 and tested at week 8 showed increased high-contrast background preference. Interestingly, cuttlefish in the enriched group preferred an object size similar to their body size at day 1 and week 4, but changed this preference to smaller objects at week 12. These results suggest that high-contrast backgrounds may be more adaptive for juvenile cuttlefish, and visually enriched environments are important for the development of these background preference behaviours.


Assuntos
Decapodiformes/fisiologia , Visão Ocular , Animais , Comportamento Animal , Padronização Corporal , Cor , Biologia do Desenvolvimento/métodos , Meio Ambiente , Aprendizagem , Fatores de Tempo , Percepção Visual
14.
Proc Natl Acad Sci U S A ; 106(25): 10376-81, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19497870

RESUMO

This paper presents a computational model for color coding that provides a functional explanation of how humans perceive colors in a homogeneous color space. Beginning with known properties of human cone photoreceptors, the model estimates the locations of the reflectance spectra of Munsell color chips in perceptual color space as represented in the CIE L*a*b* color system. The fit between the two structures is within the limits of expected measurement error. Estimates of the structure of perceptual color space for color anomalous dichromats missing one of the normal cone photoreceptors correspond closely to results from the Farnsworth-Munsell color test. An unanticipated outcome of the model provides a functional explanation of why additive lights are always red, green, and blue and provide maximum gamut for color monitors and color television even though they do not correspond to human cone absorption spectra.


Assuntos
Percepção de Cores , Simulação por Computador , Modelos Psicológicos , Humanos
15.
Sci Rep ; 12(1): 2514, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169192

RESUMO

Despite numerous studies demonstrating the cognitive ability of cephalopods, there is currently no study showing an emotion-like behavior in this group of animals. To examine whether cuttlefish have different internal states, we developed a behavioral paradigm to assess if prior surprised events are able to alter the choice made by cuttlefish. By presenting unexpected food rewards to cuttlefish before the test, we investigated whether the reaction time of choosing between two shrimps, an intuitive response toward the prey without previous learning, at three different levels of discriminative tests (easy, difficult, and ambiguous), are different compared to the one without an unexpected reward. This behavioral paradigm serves to demonstrate whether cuttlefish are aware of ambiguous situations, and their choice outcome and reaction time are dependent of their internal states. The results show that the response latency was significantly shortened in the difficult and ambiguous tests when choosing from two shrimps that are either moderately different in size or similar sizes, respectively, when cuttlefish have received unexpected rewards before the test. These results were compared with tests during which the cuttlefish did not receive any reward in advance. Furthermore, this shortening of latency did not result in a difference in choice outcome during the difficult and ambiguous tests. Interestingly, even when cuttlefish have obtained the expected food rewards or simply made tentacular strike without prey capture each time before test, these prior experiences were sufficient to shorten the response latency in the difficult and ambiguous tests. However, different from the result of unexpected rewards, food consumption alone or prey capture failure did affect the choice outcome during the simple and difficult tests. Taken together, our findings suggest that pre-test treatments of unexpected and expected rewards or simply unsuccessful visual attack seem to induce cuttlefish to adopt different foraging behaviors. This context dependent decision making suggests that cuttlefish's foraging strategies are influenced by the previously surprised event and their internal states. It also shows a speed-accuracy tradeoff in difficult and ambiguous situations when foraging for prey. This observation may lead to a future investigation of the presence of emotional state in cephalopods.


Assuntos
Comportamento Animal/fisiologia , Comportamento de Escolha/fisiologia , Decapodiformes/fisiologia , Comportamento Predatório/fisiologia , Recompensa , Animais , Apetite/fisiologia , Cognição , Decápodes , Emoções/fisiologia , Feminino , Aprendizagem/fisiologia , Tempo de Reação
16.
Biology (Basel) ; 11(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36358261

RESUMO

Nociception is the neural process of encoding noxious stimuli and is typically accompanied by a reflex withdrawal response away from the potentially injurious stimulus. Studies on nociception in cephalopods have so far focused on octopus and squid, with no investigations to our knowledge on cuttlefish. Yet, these are an important species both in scientific and commercial use. Therefore, the present study demonstrated that a standard pain stimulus, acetic acid, induced grooming behaviour directed towards the injection site in cuttlefish and that the injection of lidocaine reduces grooming behaviours in acetic-acid-injected cuttlefish. Wound-directed behaviour demonstrates that the animal is aware of the damage; thus, when subjecting these animals to any painful treatments in the laboratory, researchers should consider alleviating pain by the administration of pain-relieving drugs.

17.
IEEE Trans Biomed Eng ; 69(1): 482-493, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34310283

RESUMO

OBJECTIVE: To design and verify a CMOS 256-pixel photovoltaic-powered subretinal prosthetic chip with key advances over the state-of-the-art. The three key advances are: 1) automatic adaptation to changing background illuminance levels; 2) increase of injection charges with reduced crosstalk leakage charges, enhanced charge balance, and low process variations; 3) stable stimulation voltage to keep the safety of water window. METHODS: The novel auto-adaptive pixel circuit is designed to realize the Michealis - Menten equation (MME) so that the automatic adaptation to changing background illuminance can be achieved. Both improved biphasic constant current stimulator (CCS) via bi-directional shared electrodes (BDSEs) with optimized stimulation pattern and improved constant current generator/ring oscillator are designed to achieve the above second advance on injection charges. The closed-loop charge pump is designed to achieve the third advance. RESULTS: The measured dynamic range of image illuminance is increased to 54.7 dB. The maximum stimulation charge is 8.89nC. The measured stimulation current mismatch is 1.7% and the measured residual charge is 0.150 nC. The measured variations of stimulation frequencies are from 26 Hz to 29.7 Hz. The results of ex vivo tests have shown that the proposed subretinal chip can evoke spiking responses of RGCs. The function of adaptation process to background illuminance has also been verified. CONCLUSION AND SIGNIFICANCE: Through both electrical measurement and ex vivo tests, the functions of designed subretinal chip have been validated successfully. It is shown that the proposed subretinal chip is a promising solution for subretinal prostheses.


Assuntos
Próteses e Implantes , Eletrodos
18.
J Exp Biol ; 213(2): 187-99, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20038652

RESUMO

Cuttlefish and other cephalopods achieve dynamic background matching with two general classes of body patterns: uniform (or uniformly stippled) patterns and mottle patterns. Both pattern types have been described chiefly by the size scale and contrast of their skin components. Mottle body patterns in cephalopods have been characterized previously as small-to-moderate-scale light and dark skin patches (i.e. mottles) distributed somewhat evenly across the body surface. Here we move beyond this commonly accepted qualitative description by quantitatively measuring the scale and contrast of mottled skin components and relating these statistics to specific visual background stimuli (psychophysics approach) that evoke this type of background-matching pattern. Cuttlefish were tested on artificial and natural substrates to experimentally determine some primary visual background cues that evoke mottle patterns. Randomly distributed small-scale light and dark objects (or with some repetition of small-scale shapes/sizes) on a lighter substrate with moderate contrast are essential visual cues to elicit mottle camouflage patterns in cuttlefish. Lowering the mean luminance of the substrate without changing its spatial properties can modulate the mottle pattern toward disruptive patterns, which are of larger scale, different shape and higher contrast. Backgrounds throughout nature consist of a continuous range of spatial scales; backgrounds with medium-sized light/dark patches of moderate contrast are those in which cuttlefish Mottle patterns appear to be the most frequently observed.


Assuntos
Adaptação Fisiológica , Decapodiformes/fisiologia , Percepção Visual , Animais , Meio Ambiente , Pigmentação da Pele/fisiologia
19.
J Pineal Res ; 48(1): 20-38, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19925580

RESUMO

Melatonin protects cells against various types of oxidative stress-induced apoptosis due primarily to its ability to effectively scavenge pathological and disease condition-augmented generation of mitochondrial reactive oxygen species (mROS). Once produced, mROS indiscriminately damage mitochondrial components and more importantly they crucially activate directly the mitochondrial permeability transition (MPT), one of the critical mechanisms for initiating post mitochondrial apoptotic signaling. Whether or not melatonin targets directly the MPT, however, remains inconclusive, particularly during oxidative stress. This study, thus, investigated this possibility of an 'oxidation free Ca(2+) stress' in the presence of vitamin E after ionomycin exposure as a sole Ca(2+)-mediated MPT in order to exclude melatonin's primary antioxidative effects as well as Ca(2+)-mediated oxidative stress. The studies were carried out using cultured rat brain astrocytes RBA-1. With the application of laser scanning multiple fluorescence imaging microscopy, we visualized for the first time multiple mitochondrial protective effects provided by melatonin during Ca(2+) stress. First, melatonin, due to its primary antioxidative actions, completely prevented mCa(2+)-induced mROS formation during ionomycin exposure. Secondly, when melatonin(')s antioxidative effects were prevented due to the addition of vitamin E, melatonin significantly prevented mCa(2+)-mediated MPT and apoptosis suggesting its direct targeting of the MPT. Surprisingly, in the presence of cyclosporin A, a MPT inhibitor, melatonin reduced further mCa(2+)-mediated apoptosis during ionomycin exposure also suggesting its targeting beyond the MPT. As astrocytes are actively involve in regulating synaptic transmission and neurovascular coupling in the CNS, these multiple mitochondrial layers of protection provided by melatonin against mCa(2+)-and/or mROS-mediated apoptosis in astrocytes may be crucial for future therapeutic prevention and treatment of astrocyte-mediated neurodegenerative diseases in the CNS.


Assuntos
Astrócitos/metabolismo , Encéfalo/citologia , Melatonina/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Animais , Apoptose/efeitos dos fármacos , Astrócitos/citologia , Cálcio/metabolismo , Células Cultivadas , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Ionomicina/farmacologia , Ionóforos/farmacologia , Microscopia Confocal , Ratos , Espécies Reativas de Oxigênio/metabolismo , Vitamina E/farmacologia
20.
R Soc Open Sci ; 7(12): 201602, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33489290

RESUMO

Decision-making, when humans and other animals choose between two options, is not always based on the absolute values of the options but can also depend on their relative values. The present study examines whether decision-making by cuttlefish is dependent on relative values learned from previous experience. Cuttlefish preferred a larger quantity when making a choice between one or two shrimps (1 versus 2) during a two-alternative forced choice. However, after cuttlefish were primed under conditions where they were given a small reward for choosing one shrimp in a no shrimp versus one shrimp test (0 versus 1) six times in a row, they chose one shrimp significantly more frequently in the 1 versus 2 test. This reversed preference for a smaller quantity was not due to satiation at the time of decision-making, as cuttlefish fed a small shrimp six times without any choice test prior to the experiment still preferred two shrimps significantly more often in a subsequent 1 versus 2 test. This suggests that the preference of one shrimp in the quantity comparison test occurs via a process of learned valuation. Foraging preference in cuttlefish thus depends on the relative value of previous prey choices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA