Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 95: 98-110, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30550812

RESUMO

Stroke consists of an abrupt reduction of cerebral blood flow resulting in hypoxia that triggers an excitotoxicity, oxidative stress, and neuroinflammation. After the ischemic process, neural precursor cells present in the subventricular zone of the lateral ventricle and subgranular zone of the dentate gyrus proliferate and migrate towards the lesion, contributing to the brain repair. The neurogenesis is induced by signal transduction pathways, growth factors, attractive factors for neuroblasts, transcription factors, pro and anti-inflammatory mediators and specific neurotransmissions. However, this endogenous neurogenesis occurs slowly and does not allow a complete restoration of brain function. Despite that, understanding the mechanisms of neurogenesis could improve the therapeutic strategies for brain repair. This review presents the current knowledge about brain repair process after stroke and the perspectives regarding the development of promising therapies that aim to improve neurogenesis and its potential to form new neural networks.


Assuntos
Isquemia Encefálica/complicações , Isquemia Encefálica/fisiopatologia , Regeneração Nervosa , Neurogênese , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia , Animais , Isquemia Encefálica/patologia , Transdiferenciação Celular , Humanos , Transplante de Células-Tronco , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia
2.
Stem Cell Rev Rep ; 18(8): 2852-2871, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962176

RESUMO

Neurogenesis is a biological process characterized by new neurons formation from stem cells. For decades, it was believed that neurons only multiplied during development and in the postnatal period but the discovery of neural stem cells (NSCs) in mature brain promoted a revolution in neuroscience field. In mammals, neurogenesis consists of migration, differentiation, maturation, as well as functional integration of newborn cells into the pre-existing neuronal circuit. Actually, NSC density drops significantly after the first stages of development, however in specific places in the brain, called neurogenic niches, some of these cells retain their ability to generate new neurons and glial cells in adulthood. The subgranular (SGZ), and the subventricular zones (SVZ) are examples of regions where the neurogenesis process occurs in the mature brain. There, the potential of NSCs to produce new neurons has been explored by new advanced methodologies and in neuroscience for the treatment of brain damage and/or degeneration. Based on that, this review highlights endogenous factors and drugs capable of stimulating neurogenesis, as well as the perspectives for the use of NSCs for neurological and neurodegenerative diseases.


Assuntos
Células-Tronco Neurais , Neurogênese , Animais , Humanos , Recém-Nascido , Adulto , Neurogênese/fisiologia , Ventrículos Laterais , Neurônios , Neuroglia , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA