Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 40(Supplement_1): i481-i489, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940134

RESUMO

MOTIVATION: Cell-cell interactions (CCIs) consist of cells exchanging signals with themselves and neighboring cells by expressing ligand and receptor molecules and play a key role in cellular development, tissue homeostasis, and other critical biological functions. Since direct measurement of CCIs is challenging, multiple methods have been developed to infer CCIs by quantifying correlations between the gene expression of the ligands and receptors that mediate CCIs, originally from bulk RNA-sequencing data and more recently from single-cell or spatially resolved transcriptomics (SRT) data. SRT has a particular advantage over single-cell approaches, since ligand-receptor correlations can be computed between cells or spots that are physically close in the tissue. However, the transcript counts of individual ligands and receptors in SRT data are generally low, complicating the inference of CCIs from expression correlations. RESULTS: We introduce Copulacci, a count-based model for inferring CCIs from SRT data. Copulacci uses a Gaussian copula to model dependencies between the expression of ligands and receptors from nearby spatial locations even when the transcript counts are low. On simulated data, Copulacci outperforms existing CCI inference methods based on the standard Spearman and Pearson correlation coefficients. Using several real SRT datasets, we show that Copulacci discovers biologically meaningful ligand-receptor interactions that are lowly expressed and undiscoverable by existing CCI inference methods. AVAILABILITY AND IMPLEMENTATION: Copulacci is implemented in Python and available at https://github.com/raphael-group/copulacci.


Assuntos
Comunicação Celular , Transcriptoma , Transcriptoma/genética , Humanos , Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Algoritmos , Biologia Computacional/métodos , Ligantes
2.
bioRxiv ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38712136

RESUMO

A key challenge in cancer genomics is understanding the functional relationships and dependencies between combinations of somatic mutations that drive cancer development. Such driver mutations frequently exhibit patterns of mutual exclusivity or co-occurrence across tumors, and many methods have been developed to identify such dependency patterns from bulk DNA sequencing data of a cohort of patients. However, while mutual exclusivity and co-occurrence are described as properties of driver mutations, existing methods do not explicitly disentangle functional, driver mutations from neutral, passenger mutations. In particular, nearly all existing methods evaluate mutual exclusivity or co-occurrence at the gene level, marking a gene as mutated if any mutation - driver or passenger - is present. Since some genes have a large number of passenger mutations, existing methods either restrict their analyses to a small subset of suspected driver genes - limiting their ability to identify novel dependencies - or make spurious inferences of mutual exclusivity and co-occurrence involving genes with many passenger mutations. We introduce DIALECT, an algorithm to identify dependencies between pairs of driver mutations from somatic mutation counts. We derive a latent variable mixture model for drivers and passengers that combines existing probabilistic models of passenger mutation rates with a latent variable describing the unknown status of a mutation as a driver or passenger. We use an expectation maximization (EM) algorithm to estimate the parameters of our model, including the rates of mutually exclusivity and co-occurrence between drivers. We demonstrate that DIALECT more accurately infers mutual exclusivity and co-occurrence between driver mutations compared to existing methods on both simulated mutation data and somatic mutation data from 5 cancer types in The Cancer Genome Atlas (TCGA).

3.
bioRxiv ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873258

RESUMO

Spatially resolved transcriptomics technologies provide high-throughput measurements of gene expression in a tissue slice, but the sparsity of this data complicates the analysis of spatial gene expression patterns such as gene expression gradients. We address these issues by deriving a topographic map of a tissue slice-analogous to a map of elevation in a landscape-using a novel quantity called the isodepth. Contours of constant isodepth enclose spatial domains with distinct cell type composition, while gradients of the isodepth indicate spatial directions of maximum change in gene expression. We develop GASTON, an unsupervised and interpretable deep learning algorithm that simultaneously learns the isodepth, spatial gene expression gradients, and piecewise linear functions of the isodepth that model both continuous gradients and discontinuous spatial variation in the expression of individual genes. We validate GASTON by showing that it accurately identifies spatial domains and marker genes across several biological systems. In SRT data from the brain, GASTON reveals gradients of neuronal differentiation and firing, and in SRT data from a tumor sample, GASTON infers gradients of metabolic activity and epithelial-mesenchymal transition (EMT)-related gene expression in the tumor microenvironment.

4.
Cell Syst ; 13(10): 786-797.e13, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36265465

RESUMO

Spatially resolved transcriptomics (SRT) technologies measure gene expression at known locations in a tissue slice, enabling the identification of spatially varying genes or cell types. Current approaches for these tasks assume either that gene expression varies continuously across a tissue or that a tissue contains a small number of regions with distinct cellular composition. We propose a model for SRT data from layered tissues that includes both continuous and discrete spatial variation in expression and an algorithm, Belayer, to learn the parameters of this model. Belayer models gene expression as a piecewise linear function of the relative depth of a tissue layer with possible discontinuities at layer boundaries. We use conformal maps to model relative depth and derive a dynamic programming algorithm to infer layer boundaries and gene expression functions. Belayer accurately identifies tissue layers and biologically meaningful spatially varying genes in SRT data from the brain and skin.


Assuntos
Algoritmos , Transcriptoma , Transcriptoma/genética
5.
J Comput Biol ; 29(12): 1305-1323, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36525308

RESUMO

A standard paradigm in computational biology is to leverage interaction networks as prior knowledge in analyzing high-throughput biological data, where the data give a score for each vertex in the network. One classical approach is the identification of altered subnetworks, or subnetworks of the interaction network that have both outlier vertex scores and a defined network topology. One class of algorithms for identifying altered subnetworks search for high-scoring subnetworks in subnetwork families with simple topological constraints, such as connected subnetworks, and have sound statistical guarantees. A second class of algorithms employ network propagation-the smoothing of vertex scores over the network using a random walk or diffusion process-and utilize the global structure of the network. However, network propagation algorithms often rely on ad hoc heuristics that lack a rigorous statistical foundation. In this work, we unify the subnetwork family and network propagation approaches by deriving the propagation family, a subnetwork family that approximates the sets of vertices ranked highly by network propagation approaches. We introduce NetMix2, a principled algorithm for identifying altered subnetworks from a wide range of subnetwork families. When using the propagation family, NetMix2 combines the advantages of the subnetwork family and network propagation approaches. NetMix2 outperforms other methods, including network propagation on simulated data, pan-cancer somatic mutation data, and genome-wide association data from multiple human diseases.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias , Humanos , Biologia Computacional/métodos , Algoritmos
6.
J Comput Biol ; 28(5): 469-484, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33400606

RESUMO

A classic problem in computational biology is the identification of altered subnetworks: subnetworks of an interaction network that contain genes/proteins that are differentially expressed, highly mutated, or otherwise aberrant compared with other genes/proteins. Numerous methods have been developed to solve this problem under various assumptions, but the statistical properties of these methods are often unknown. For example, some widely used methods are reported to output very large subnetworks that are difficult to interpret biologically. In this work, we formulate the identification of altered subnetworks as the problem of estimating the parameters of a class of probability distributions that we call the Altered Subset Distribution (ASD). We derive a connection between a popular method, jActiveModules, and the maximum likelihood estimator (MLE) of the ASD. We show that the MLE is statistically biased, explaining the large subnetworks output by jActiveModules. Based on these insights, we introduce NetMix, an algorithm that uses Gaussian mixture models to obtain less biased estimates of the parameters of the ASD. We demonstrate that NetMix outperforms existing methods in identifying altered subnetworks on both simulated and real data, including the identification of differentially expressed genes from both microarray and RNA-seq experiments and the identification of cancer driver genes in somatic mutation data.


Assuntos
Biologia Computacional/métodos , Algoritmos , Viés , Funções Verossimilhança , Modelos Estatísticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA