Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 222(5): 853-862, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32285133

RESUMO

Human cytomegalovirus (CMV) is a ubiquitous pathogen that causes significant morbidity in some vulnerable populations. Individualized adoptive transfer of ex vivo expanded CMV-specific CD8+ T cells has provided proof-of-concept that immunotherapy can be highly effective, but a chimeric antigen receptor (CAR) approach would provide a feasible method for broad application. We created 8 novel CARs using anti-CMV neutralizing antibody sequences, which were transduced via lentiviral vector into primary CD8+ T cells. All CARs were expressed. Activity against CMV-infected target cells was assessed by release of cytokines (interferon-γ and tumor necrosis factor-α), upregulation of surface CD107a, proliferation, cytolysis of infected cells, and suppression of viral replication. While some CARs showed varying functional activity across these assays, 1 CAR based on antibody 21E9 was consistently superior in all measures. These results support development of a CMV-specific CAR for therapeutic use against CMV and potentially other applications harnessing CMV-driven immunotherapies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citomegalovirus/imunologia , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/farmacologia , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Células HEK293 , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Transdução Genética , Replicação Viral
2.
J Virol ; 92(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30045984

RESUMO

As human cytomegalovirus (HCMV) is a common cause of disease in newborns and transplant recipients, developing an HCMV vaccine is considered a major public health priority. Yet an HCMV vaccine candidate remains elusive. Although the precise HCMV immune correlates of protection are unclear, both humoral and cellular immune responses have been implicated in protection against HCMV infection and disease. Here we describe a vaccine approach based on the well-characterized modified vaccinia virus Ankara (MVA) vector to stimulate robust HCMV humoral and cellular immune responses by an antigen combination composed of the envelope pentamer complex (PC), glycoprotein B (gB), and phosphoprotein 65 (pp65). We show that in mice, multiantigenic MVA vaccine vectors simultaneously expressing all five PC subunits, gB, and pp65 elicit potent complement-independent and complement-dependent HCMV neutralizing antibodies as well as mouse and human MHC-restricted, polyfunctional T cell responses by the individual antigens. In addition, we demonstrate that the PC/gB antigen combination of these multiantigenic MVA vectors can enhance the stimulation of humoral immune responses that mediate in vitro neutralization of different HCMV strains and antibody-dependent cellular cytotoxicity. These results support the use of MVA to develop a multiantigenic vaccine candidate for controlling HCMV infection and disease in different target populations, such as pregnant women and transplant recipients.IMPORTANCE The development of a human cytomegalovirus (HCMV) vaccine to prevent congenital disease and transplantation-related complications is an unmet medical need. While many HCMV vaccine candidates have been developed, partial success in preventing or controlling HCMV infection in women of childbearing age and transplant recipients has been observed with an approach based on envelope glycoprotein B (gB). We introduce a novel vaccine strategy based on the clinically deployable modified vaccinia virus Ankara (MVA) vaccine vector to elicit potent humoral and cellular immune responses by multiple immunodominant HCMV antigens, including gB, phosphoprotein 65, and all five subunits of the pentamer complex. These findings could contribute to development of a multiantigenic vaccine strategy that may afford more protection against HCMV infection and disease than a vaccine approach employing solely gB.


Assuntos
Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/imunologia , Citomegalovirus/imunologia , Fosfoproteínas/imunologia , Vaccinia virus/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas da Matriz Viral/imunologia , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Antígenos Virais/genética , Antígenos Virais/imunologia , Sequência de Bases , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/metabolismo , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Vacinas contra Citomegalovirus/administração & dosagem , Vacinas contra Citomegalovirus/genética , Feminino , Regulação da Expressão Gênica , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Camundongos , Fosfoproteínas/genética , Gravidez , Alinhamento de Sequência , Transdução de Sinais , Vaccinia virus/genética , Proteínas do Envelope Viral/genética , Proteínas da Matriz Viral/genética
3.
Blood ; 129(1): 114-125, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27760761

RESUMO

Attenuated poxvirus modified vaccinia Ankara (MVA) is a useful viral-based vaccine for clinical investigation, because of its excellent safety profile and property of inducing potent immune responses against recombinant (r) antigens. We developed Triplex by constructing an rMVA encoding 3 immunodominant cytomegalovirus (CMV) antigens, which stimulates a host antiviral response: UL83 (pp65), UL123 (IE1-exon4), and UL122 (IE2-exon5). We completed the first clinical evaluation of the Triplex vaccine in 24 healthy adults, with or without immunity to CMV and vaccinia virus (previous DryVax smallpox vaccination). Three escalating dose levels (DL) were administered IM in 8 subjects/DL, with an identical booster injection 28 days later and 1-year follow-up. Vaccinations at all DL were safe with no dose-limiting toxicities. No vaccine-related serious adverse events were documented. Local and systemic reactogenicity was transient and self-limiting. Robust, functional, and durable Triplex-driven expansions of CMV-specific T cells were detected by measuring T-cell surface levels of 4-1BB (CD137), binding to CMV-specific HLA multimers, and interferon-γ production. Marked and durable CMV-specific T-cell responses were also detected in Triplex-vaccinated CMV-seronegatives, and in DryVax-vaccinated subjects. Long-lived memory effector phenotype, associated with viral control during CMV primary infection, was predominantly found on the membrane of CMV-specific and functional T cells, whereas off-target vaccine responses activating memory T cells from the related herpesvirus Epstein-Barr virus remained undetectable. Combined safety and immunogenicity results of MVA in allogeneic hematopoietic stem cell transplant (HCT) recipients and Triplex in healthy adults motivated the initiation of a placebo-controlled multicenter trial of Triplex in HCT patients. This trial was registered at www.clinicaltrials.gov as #NCT02506933.


Assuntos
Antígenos Virais/imunologia , Vacinas contra Citomegalovirus/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Adulto , Citomegalovirus , Vacinas contra Citomegalovirus/efeitos adversos , Feminino , Humanos , Proteínas Imediatamente Precoces/imunologia , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/imunologia , Transativadores/imunologia , Vacinas de DNA , Proteínas da Matriz Viral/imunologia , Vacinas Virais , Adulto Jovem
4.
J Virol ; 91(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28077639

RESUMO

As human cytomegalovirus (HCMV) is the most common infectious cause of fetal anomalies during pregnancy, development of a vaccine that prevents HCMV infection is considered a global health priority. Although HCMV immune correlates of protection are only poorly defined, neutralizing antibodies (NAb) targeting the envelope pentamer complex (PC) composed of the subunits gH, gL, UL128, UL130, and UL131A are thought to contribute to the prevention of HCMV infection. Here, we describe a continuous target sequence within UL128 that is recognized by a previously isolated potent PC-specific NAb termed 13B5. By using peptide-based scanning procedures, we identified a 13-amino-acid-long target sequence at the UL128 C terminus that binds the 13B5 antibody with an affinity similar to that of the purified PC. In addition, the 13B5 binding site is universally conserved in HCMV, contains a previously described UL128/gL interaction site, and interferes with the 13B5 neutralizing function, indicating that the 13B5 epitope sequence is located within the PC at a site of critical importance for HCMV neutralization. Vaccination of mice with peptides containing the 13B5 target sequence resulted in the robust stimulation of binding antibodies and, in a subset of immunized animals, in the induction of detectable NAb, supporting that the identified 13B5 target sequence constitutes a PC-specific neutralizing epitope. These findings provide evidence for the discovery of a continuous neutralizing epitope within the UL128 subunit of the PC that could be an important target of humoral immune responses that are involved in protection against congenital HCMV infection.IMPORTANCE Neutralizing antibodies (NAb) targeting the human cytomegalovirus (HCMV) envelope pentamer complex (PC) are thought to be important for preventing HCMV transmission from the mother to the fetus, thereby mitigating severe developmental disabilities in newborns. However, the epitope sequences within the PC that are recognized by these potentially protective antibody responses are only poorly defined. Here, we provide evidence for the existence of a highly conserved, continuous, PC-specific epitope sequence that appears to be located within the PC at a subunit interaction site of critical importance for HCMV neutralization. These discoveries provide insights into a continuous PC-specific neutralizing epitope, which could be an important target for a vaccine formulation to interfere with congenital HCMV infection.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Epitopos de Linfócito B/imunologia , Glicoproteínas de Membrana/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Sítios de Ligação , Sequência Conservada , Mapeamento de Epitopos , Camundongos
5.
Proc Natl Acad Sci U S A ; 112(44): 13645-50, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26483473

RESUMO

Elucidation of maternal immune correlates of protection against congenital cytomegalovirus (CMV) is necessary to inform future vaccine design. Here, we present a novel rhesus macaque model of placental rhesus CMV (rhCMV) transmission and use it to dissect determinants of protection against congenital transmission following primary maternal rhCMV infection. In this model, asymptomatic intrauterine infection was observed following i.v. rhCMV inoculation during the early second trimester in two of three rhCMV-seronegative pregnant females. In contrast, fetal loss or infant CMV-associated sequelae occurred in four rhCMV-seronegative pregnant macaques that were CD4(+) T-cell depleted at the time of inoculation. Animals that received the CD4(+) T-cell-depleting antibody also exhibited higher plasma and amniotic fluid viral loads, dampened virus-specific CD8(+) T-cell responses, and delayed production of autologous neutralizing antibodies compared with immunocompetent monkeys. Thus, maternal CD4(+) T-cell immunity during primary rhCMV infection is important for controlling maternal viremia and inducing protective immune responses that prevent severe CMV-associated fetal disease.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por Citomegalovirus/prevenção & controle , Transmissão Vertical de Doenças Infecciosas , Troca Materno-Fetal , Animais , Anticorpos Antivirais/imunologia , Infecções por Citomegalovirus/congênito , Infecções por Citomegalovirus/transmissão , Modelos Animais de Doenças , Feminino , Macaca mulatta , Gravidez
7.
J Virol ; 89(23): 11884-98, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26378171

RESUMO

UNLABELLED: Human cytomegalovirus (HCMV) elicits neutralizing antibodies (NAb) of various potencies and cell type specificities to prevent HCMV entry into fibroblasts (FB) and epithelial/endothelial cells (EpC/EnC). NAb targeting the major essential envelope glycoprotein complexes gB and gH/gL inhibit both FB and EpC/EnC entry. In contrast to FB infection, HCMV entry into EpC/EnC is additionally blocked by extremely potent NAb to conformational epitopes of the gH/gL/UL128/130/131A pentamer complex (PC). We recently developed a vaccine concept based on coexpression of all five PC subunits by a single modified vaccinia virus Ankara (MVA) vector, termed MVA-PC. Vaccination of mice and rhesus macaques with MVA-PC resulted in a high titer and sustained NAb that blocked EpC/EnC infection and lower-titer NAb that inhibited FB entry. However, antibody function responsible for the neutralizing activity induced by the MVA-PC vaccine is uncharacterized. Here, we demonstrate that MVA-PC elicits NAb with cell type-specific neutralization potency and antigen recognition pattern similar to human NAb targeting conformational and linear epitopes of the UL128/130/131A subunits or gH. In addition, we show that the vaccine-derived PC-specific NAb are significantly more potent than the anti-gH NAb to prevent HCMV spread in EpC and infection of human placental cytotrophoblasts, cell types thought to be of critical importance for HCMV transmission to the fetus. These findings further validate MVA-PC as a clinical vaccine candidate to elicit NAb that resembles those induced during HCMV infection and provide valuable insights into the potency of PC-specific NAb to interfere with HCMV cell-associated spread and infection of key placental cells. IMPORTANCE: As a consequence of the leading role of human cytomegalovirus (HCMV) in causing permanent birth defects, developing a vaccine against HCMV has been assigned a major public health priority. We have recently introduced a vaccine strategy based on a widely used, safe, and well-characterized poxvirus vector platform to elicit potent and durable neutralizing antibody (NAb) responses targeting the HCMV envelope pentamer complex (PC), which has been suggested as a critical component for a vaccine to prevent congenital HCMV infection. With this work, we confirm that the NAb elicited by the vaccine vector have properties that are similar to those of human NAb isolated from individuals chronically infected with HCMV. In addition, we show that PC-specific NAb have potent ability to prevent infection of key placental cells that HCMV utilizes to cross the fetal-maternal interface, suggesting that NAb targeting the PC may be essential to prevent HCMV vertical transmission.


Assuntos
Anticorpos Neutralizantes/imunologia , Infecções por Citomegalovirus/prevenção & controle , Citomegalovirus/imunologia , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Complexos Multiproteicos/imunologia , Trofoblastos/virologia , Vacinas Virais/imunologia , Animais , Linhagem Celular , Immunoblotting , Macaca mulatta , Glicoproteínas de Membrana/imunologia , Camundongos , Testes de Neutralização , Proteínas do Envelope Viral/imunologia , Internalização do Vírus
8.
PLoS Pathog ; 10(11): e1004524, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25412505

RESUMO

Human Cytomegalovirus (HCMV) utilizes two different pathways for host cell entry. HCMV entry into fibroblasts requires glycoproteins gB and gH/gL, whereas HCMV entry into epithelial and endothelial cells (EC) requires an additional complex composed of gH, gL, UL128, UL130, and UL131A, referred to as the gH/gL-pentamer complex (gH/gL-PC). While there are no established correlates of protection against HCMV, antibodies are thought to be important in controlling infection. Neutralizing antibodies (NAb) that prevent gH/gL-PC mediated entry into EC are candidates to be assessed for in vivo protective function. However, these potent NAb are predominantly directed against conformational epitopes derived from the assembled gH/gL-PC. To address these concerns, we constructed Modified Vaccinia Ankara (MVA) viruses co-expressing all five gH/gL-PC subunits (MVA-gH/gL-PC), subsets of gH/gL-PC subunits (gH/gL or UL128/UL130/UL131A), or the gB subunit from HCMV strain TB40/E. We provide evidence for cell surface expression and assembly of complexes expressing full-length gH or gB, or their secretion when the corresponding transmembrane domains are deleted. Mice or rhesus macaques (RM) were vaccinated three times with MVA recombinants and serum NAb titers that prevented 50% infection of human EC or fibroblasts by HCMV TB40/E were determined. NAb responses induced by MVA-gH/gL-PC blocked HCMV infection of EC with potencies that were two orders of magnitude greater than those induced by MVA expressing gH/gL, UL128-UL131A, or gB. In addition, MVA-gH/gL-PC induced NAb responses that were durable and efficacious to prevent HCMV infection of Hofbauer macrophages, a fetal-derived cell localized within the placenta. NAb were also detectable in saliva of vaccinated RM and reached serum peak levels comparable to NAb titers found in HCMV hyperimmune globulins. This vaccine based on a translational poxvirus platform co-delivers all five HCMV gH/gL-PC subunits to achieve robust humoral responses that neutralize HCMV infection of EC, placental macrophages and fibroblasts, properties of potential value in a prophylactic vaccine.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Citomegalovirus , Vacinas contra Citomegalovirus , Citomegalovirus , Complexos Multiproteicos , Proteínas do Envelope Viral , Animais , Citomegalovirus/genética , Citomegalovirus/imunologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/genética , Vacinas contra Citomegalovirus/imunologia , Feminino , Humanos , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Complexos Multiproteicos/genética , Complexos Multiproteicos/imunologia , Vaccinia virus/genética , Vaccinia virus/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
10.
Commun Med (Lond) ; 4(1): 19, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366141

RESUMO

BACKGROUND: Although the mpox global health emergency caused by mpox virus (MPXV) clade IIb.1 has ended, mpox cases are still reported due to low vaccination coverage and waning immunity. COH04S1 is a clinically evaluated, multiantigen COVID-19 vaccine candidate built on a fully synthetic platform of the highly attenuated modified vaccinia Ankara (MVA) vector, representing the only FDA-approved smallpox/mpox vaccine JYNNEOS. Given the potential threat of MPXV resurgence and need for vaccine alternatives, we aimed to assess the capacity COH04S1 and its synthetic MVA (sMVA) backbone to confer MPXV-specific immunity. METHODS: We evaluated orthopoxvirus-specific and MPXV cross-reactive immune responses in samples collected during a Phase 1 clinical trial of COH04S1 and in non-human primates (NHP) vaccinated with COH04S1 or its sMVA backbone. MPXV cross-reactive immune responses in COH04S1-vaccinated healthy adults were compared to responses measured in healthy subjects vaccinated with JYNNEOS. Additionally, we evaluated the protective efficacy of COH04S1 and sMVA against mpox in mpox-susceptible CAST/EiJ mice. RESULTS: COH04S1-vaccinated individuals develop robust orthopoxvirus-specific humoral and cellular responses, including cross-reactive antibodies to MPXV-specific virion proteins as well as MPXV cross-neutralizing antibodies in 45% of the subjects. In addition, NHP vaccinated with COH04S1 or sMVA show similar MPXV cross-reactive antibody responses. Moreover, MPXV cross-reactive humoral responses elicited by COH04S1 are comparable to those measured in JYNNEOS-vaccinated subjects. Finally, we show that mice vaccinated with COH04S1 or sMVA are protected from lung infection following challenge with MPXV clade IIb.1. CONCLUSIONS: These results demonstrate the capacity of sMVA vaccines to elicit cross-reactive and protective orthopox-specific immunity against MPXV, suggesting that COH04S1 and sMVA could be developed as bivalent or monovalent mpox vaccine alternatives against MPXV.


Mpox is an ilness caused by the mpox virus (MPXV) that belongs to the poxvirus family. The 2022-2023 mpox outbreak highlights the need to develop effective vaccines against MPXV. We have developed a COVID-19 vaccine using as scaffold chemically synthesized genetic material of a highly attenuated and safe poxvirus vector. This scaffold is the same present in a vaccine that has been approved and is given to prevent mpox. Here, we show that healthy human volunteers or monkeys vaccinated with this COVID-19 vaccine generated a robust immune response against MPXV, similar to that generated by the mpox vaccine with the same scaffold. This COVID-19 vaccine is also able to protect mice from infection caused by the MPXV strain isolated from the recent mpox outbreak. This COVID-19 vaccine in a poxvirus scaffold might be an additional tool to curtail mpox outbreaks.

11.
NPJ Vaccines ; 9(1): 68, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555379

RESUMO

Human cytomegalovirus (CMV) is the most common infectious cause of complications post-transplantation, while a CMV vaccine for transplant recipients has yet to be licensed. Triplex, a multiantigen Modified Vaccinia Ankara (MVA)-vectored CMV vaccine candidate based on the immunodominant antigens phosphoprotein 65 (pp65) and immediate-early 1 and 2 (IE1/2), is in an advanced stage of clinical development. However, its limited genetic and expression stability restricts its potential for large-scale production. Using a recently developed fully synthetic MVA (sMVA) platform, we developed a new generation Triplex vaccine candidate, T10-F10, with different sequence modifications for enhanced vaccine stability. T10-F10 demonstrated genetic and expression stability during extensive virus passaging. In addition, we show that T10-F10 confers comparable immunogenicity to the original Triplex vaccine to elicit antigen-specific T cell responses in HLA-transgenic mice. These results demonstrate improvements in translational vaccine properties of an sMVA-based CMV vaccine candidate designed as a therapeutic treatment for transplant recipients.

12.
J Virol ; 86(12): 6688-700, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22514338

RESUMO

Tetherin (BST2) is the host cell factor that blocks the particle release of some enveloped viruses. Two putative feline tetherin proteins differing at the level of the N-terminal coding region have recently been described and tested for their antiviral activity. By cloning and comparing the two reported feline tetherins (called here cBST2(504) and cBST2*) and generating specific derivative mutants, this study provides evidence that feline tetherin has a shorter intracytoplasmic domain than those of other known homologues. The minimal tetherin promoter was identified and assayed for its ability to drive tetherin expression in an alpha interferon-inducible manner. We also demonstrated that cBST2(504) is able to dimerize, is localized at the cellular membrane, and impairs human immunodeficiency virus type 1 (HIV-1) particle release, regardless of the presence of the Vpu antagonist accessory protein. While cBST2(504) failed to restrict wild-type feline immunodeficiency virus (FIV) egress, FIV mutants, bearing a frameshift at the level of the envelope-encoding region, were potently blocked. The transient expression of the FIV envelope glycoprotein was able to rescue mutant particle release from feline tetherin-positive cells but did not antagonize human BST2 activity. Moreover, cBST2(504) was capable of specifically immunoprecipitating the FIV envelope glycoprotein. Finally, cBST2(504) also exerted its function on HIV-2 ROD10 and on the simian immunodeficiency virus SIVmac239. Taken together, these results show that feline tetherin does indeed have a short N-terminal region and that the FIV envelope glycoprotein is the predominant factor counteracting tetherin restriction.


Assuntos
Gatos/metabolismo , Síndrome de Imunodeficiência Adquirida Felina/metabolismo , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Vírus da Imunodeficiência Felina/fisiologia , Proteínas do Envelope Viral/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Gatos/genética , Linhagem Celular , Síndrome de Imunodeficiência Adquirida Felina/genética , Síndrome de Imunodeficiência Adquirida Felina/virologia , Proteínas Ligadas por GPI/genética , Humanos , Vírus da Imunodeficiência Felina/genética , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Alinhamento de Sequência , Proteínas do Envelope Viral/genética , Liberação de Vírus
13.
J Virol ; 86(12): 6563-74, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22491465

RESUMO

Genital herpes is caused by herpes simplex virus 1 (HSV-1) and HSV-2, and its incidence is constantly increasing in the human population. Regardless of the clinical manifestation, HSV-1 and HSV-2 infections are highly transmissible to sexual partners and enhance susceptibility to other sexually transmitted infections. An effective vaccine is not yet available. Here, HSV-1 glycoprotein B (gB1) was delivered by a feline immunodeficiency virus (FIV) vector and tested against HSV-1 and HSV-2 vaginal challenges in C57BL/6 mice. The gB1 vaccine elicited cross-neutralizing antibodies and cell-mediated responses that protected 100 and 75% animals from HSV-1- and HSV-2-associated severe disease, respectively. Two of the eight fully protected vaccinees underwent subclinical HSV-2 infection, as demonstrated by deep immunosuppression and other analyses. Finally, vaccination prevented death in 83% of the animals challenged with a HSV-2 dose that killed 78 and 100% naive and mock-vaccinated controls, respectively. Since this FIV vector can accommodate two or more HSV immunogens, this vaccine has ample potential for improvement and may become a candidate for the development of a truly effective vaccine against genital herpes.


Assuntos
Proteção Cruzada , Herpes Genital/imunologia , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 2/fisiologia , Proteínas do Envelope Viral/imunologia , Animais , Feminino , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Herpes Genital/prevenção & controle , Herpes Genital/virologia , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Vacinas contra o Vírus do Herpes Simples/genética , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/imunologia , Humanos , Imunidade Celular , Vírus da Imunodeficiência Felina/genética , Vírus da Imunodeficiência Felina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Vacinação , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/genética
14.
New Microbiol ; 36(1): 1-22, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23435812

RESUMO

No matter what their origin, strain and family, viruses have evolved exquisite strategies to reach and penetrate specific target cells where they hijack the cellular machinery to express viral genes and produce progeny particles. The ability to deliver and express genetic information to cells is the basis for exploiting viruses as "Trojan horses" to genetically modify the natural cell target or, upon manipulation of the viral receptor to retarget the virus, to genetically engineer different cell types. This process, known as transduction, is accomplished using viral vectors derived from parental wild type viruses whose viral genes, essential for replication and virulence, have been replaced with the heterologous gene(s) required for cell manipulation. Rearrangement of the viral genome to impede replication or generation of infectious virions but maintaining the ability to deliver nucleic acids has been the object of intense research since the early 1980s. Technological advances and the ever-growing knowledge of molecular virology and virus-host cell relationships have constantly improved the safety profile of viral vectors that are now used in vitro and in vivo to study cellular gene function, correct genetic defects (gene therapy), express therapeutic proteins, vaccinate against infectious agents and tumors, produce experimental animal models, and for other purposes. This review illustrates the strategies used to generate some of the most used viral vectors, and their advantages, limitations and principal applications.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos , Vírus/genética , Animais , Humanos , Replicação Viral/fisiologia
15.
NPJ Vaccines ; 8(1): 41, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928589

RESUMO

Emerging SARS-CoV-2 Omicron subvariants continue to disrupt COVID-19 vaccine efficacy through multiple immune mechanisms including neutralizing antibody evasion. We developed COH04S1, a synthetic modified vaccinia Ankara vector that co-expresses Wuhan-Hu-1-based spike and nucleocapsid antigens. COH04S1 demonstrated efficacy against ancestral virus and Beta and Delta variants in animal models and was safe and immunogenic in a Phase 1 clinical trial. Here, we report efficacy of COH04S1 and analogous Omicron BA.1- and Beta-specific vaccines to protect Syrian hamsters from Omicron subvariants. Despite eliciting strain-specific antibody responses, all three vaccines protect hamsters from weight loss, lower respiratory tract infection, and lung pathology following challenge with Omicron BA.1 or BA.2.12.1. While the BA.1-specifc vaccine affords consistently improved efficacy compared to COH04S1 to protect against homologous challenge with BA.1, all three vaccines confer similar protection against heterologous challenge with BA.2.12.1. These results demonstrate efficacy of COH04S1 and variant-specific derivatives to confer cross-protective immunity against SARS-CoV-2 Omicron subvariants.

16.
J Immunol Sci ; 7(1): 9-27, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36996290

RESUMO

Background: Vaccines for SARS-CoV-2 have been considerably effective in reducing rates of infection and severe COVID-19. However, many patients, especially those who are immunocompromised due to cancer or other factors, as well as individuals who are unable to receive vaccines or are in resource-poor countries, will continue to be at risk for COVID-19. We describe clinical, therapeutic, and immunologic correlatives in two patients with cancer and severe COVID-19 who were treated with leflunomide after failing to respond to standard-of-care comprising remdesivir and dexamethasone. Both patients had breast cancer and were on therapy for the malignancy. Methods: The protocol is designed with the primary objective to assess the safety and tolerability of leflunomide in treating severe COVID-19 in patients with cancer. Leflunomide dosing consisted of a loading dose of 100 mg daily for the first three days, followed by daily dosing, at the assigned dose level (Dose Level 1: 40 mg, Dose Level -1, 20 mg; Dose Level 2, 60 mg), for an additional 11 days. At defined intervals, serial monitoring of blood samples for toxicity, pharmacokinetics, and immunologic correlative studies were performed, as well as nasopharyngeal swabs for PCR analysis of SARS-CoV-2. Results: Preclinically, leflunomide impaired viral RNA replication, and clinically, it led to a rapid improvement in the two patients discussed herein. Both patients completely recovered, with minimal toxicities; all adverse events experienced were considered unrelated to leflunomide. Single-cell mass-cytometry analysis showed that leflunomide increased levels of CD8+ cytotoxic and terminal effector T cells and decreased naïve and memory B cells. Conclusions: With ongoing COVID-19 transmission and occurrence of breakthrough infections in vaccinated individuals, including patients with cancer, therapeutic agents that target both the virus and host inflammatory response would be helpful despite the availability of currently approved anti-viral agents. Furthermore, from an access to care perspective, especially in resource-limited areas, an inexpensive, readily available, effective drug with existing safety data in humans is relevant in the real-world setting.

17.
Front Immunol ; 14: 1114131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936918

RESUMO

In the current post-pandemic era, recipients of an allogeneic hematopoietic stem cell transplant (HCT) deserve special attention. In these vulnerable patients, vaccine effectiveness is reduced by post-transplant immune-suppressive therapy; consequently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) is often associated with elevated morbidity and mortality. Characterizing SARS-CoV-2 adaptive immunity transfer from immune donors to HCT recipients in the context of immunosuppression will help identify optimal timing and vaccination strategies that can provide adequate protection to HCT recipients against infection with evolving SARS-CoV-2 variants. We performed a prospective observational study (NCT04666025 at ClinicalTrials.gov) to longitudinally monitor the transfer of SARS-CoV-2-specific antiviral immunity from HCT donors, who were either vaccinated or had a history of COVID-19, to their recipients via T-cell replete graft. Levels, function, and quality of SARS-CoV-2-specific immune responses were longitudinally analyzed up to 6 months post-HCT in 14 matched unrelated donor/recipients and four haploidentical donor/recipient pairs. A markedly skewed donor-derived SARS-CoV-2 CD4 T-cell response was measurable in 15 (83%) recipients. It showed a polarized Th1 functional profile, with the prevalence of central memory phenotype subsets. SARS-CoV-2-specific IFN-γ was detectable throughout the observation period, including early post-transplant (day +30). Functionally experienced SARS-CoV-2 Th1-type T cells promptly expanded in two recipients at the time of post-HCT vaccination and in two others who were infected and survived post-transplant COVID-19 infection. Our data suggest that donor-derived SARS-CoV-2 T-cell responses are functional in immunosuppressed recipients and may play a critical role in post-HCT vaccine response and protection from the fatal disease. Clinical trial registration: clinicaltrials.gov, identifier NCT04666025.


Assuntos
COVID-19 , Transplante de Células-Tronco Hematopoéticas , Linfócitos T , Humanos , SARS-CoV-2 , Doadores de Tecidos , Transplantados , Linfócitos T/imunologia , Vacinas contra COVID-19
18.
Vaccines (Basel) ; 11(9)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37766168

RESUMO

Hematopoietic cell transplantation (HCT) and chimeric antigen receptor (CAR)-T cell patients are immunocompromised, remain at high risk following SARS-CoV-2 infection, and are less likely than immunocompetent individuals to respond to vaccination. As part of the safety lead-in portion of a phase 2 clinical trial in patients post HCT/CAR-T for hematological malignancies (HM), we tested the immunogenicity of the synthetic modified vaccinia Ankara-based COVID-19 vaccine COH04S1 co-expressing spike (S) and nucleocapsid (N) antigens. Thirteen patients were vaccinated 3-12 months post HCT/CAR-T with two to four doses of COH04S1. SARS-CoV-2 antigen-specific humoral and cellular immune responses, including neutralizing antibodies to ancestral virus and variants of concern (VOC), were measured up to six months post vaccination and compared to immune responses in historical cohorts of naïve healthy volunteers (HV) vaccinated with COH04S1 and naïve healthcare workers (HCW) vaccinated with the FDA-approved mRNA vaccine Comirnaty® (Pfizer, New York, NY, USA). After one or two COH04S1 vaccine doses, HCT/CAR-T recipients showed a significant increase in S- and N-specific binding antibody titers and neutralizing antibodies with potent activity against SARS-CoV-2 ancestral virus and VOC, including the highly immune evasive Omicron XBB.1.5 variant. Furthermore, vaccination with COH04S1 resulted in a significant increase in S- and N-specific T cells, predominantly CD4+ T lymphocytes. Elevated S- and N-specific immune responses continued to persist at six months post vaccination. Furthermore, both humoral and cellular immune responses in COH04S1-vaccinated HCT/CAR-T patients were superior or comparable to those measured in COH04S1-vaccinated HV or Comirnaty®-vaccinated HCW. These results demonstrate robust stimulation of SARS-CoV-2 S- and N-specific immune responses including cross-reactive neutralizing antibodies by COH04S1 in HM patients post HCT/CAR-T, supporting further testing of COH04S1 in immunocompromised populations.

19.
iScience ; 25(6): 104457, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35634578

RESUMO

COVID-19 vaccine efficacy is threatened by emerging SARS-CoV-2 variants of concern (VOC) with the capacity to evade protective neutralizing antibody responses. We recently developed clinical vaccine candidate COH04S1, a synthetic modified vaccinia Ankara vector (sMVA) co-expressing spike and nucleocapsid antigens based on the Wuhan-Hu-1 reference strain that showed potent efficacy to protect against ancestral SARS-CoV-2 in Syrian hamsters and non-human primates and was safe and immunogenic in healthy volunteers. Here, we demonstrate that intramuscular immunization of Syrian hamsters with COH04S1 and an analogous Beta variant-adapted vaccine candidate (COH04S351) elicits potent cross-reactive antibody responses and protects against weight loss, lower respiratory tract infection, and lung pathology following challenge with major SARS-CoV-2 VOC, including Beta and the highly contagious Delta variant. These results demonstrate efficacy of COH04S1 and a variant-adapted vaccine analog to confer cross-protective immunity against SARS-CoV-2 and its emerging VOC, supporting clinical investigation of these sMVA-based COVID-19 vaccine candidates.

20.
NPJ Vaccines ; 7(1): 7, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064109

RESUMO

Second-generation COVID-19 vaccines could contribute to establish protective immunity against SARS-CoV-2 and its emerging variants. We developed COH04S1, a synthetic multiantigen modified vaccinia Ankara-based SARS-CoV-2 vaccine that co-expresses spike and nucleocapsid antigens. Here, we report COH04S1 vaccine efficacy in animal models. We demonstrate that intramuscular or intranasal vaccination of Syrian hamsters with COH04S1 induces robust Th1-biased antigen-specific humoral immunity and cross-neutralizing antibodies (NAb) and protects against weight loss, lower respiratory tract infection, and lung injury following intranasal SARS-CoV-2 challenge. Moreover, we demonstrate that single-dose or two-dose vaccination of non-human primates with COH04S1 induces robust antigen-specific binding antibodies, NAb, and Th1-biased T cells, protects against both upper and lower respiratory tract infection following intranasal/intratracheal SARS-CoV-2 challenge, and triggers potent post-challenge anamnestic antiviral responses. These results demonstrate COH04S1-mediated vaccine protection in animal models through different vaccination routes and dose regimens, complementing ongoing investigation of this multiantigen SARS-CoV-2 vaccine in clinical trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA