RESUMO
Chronic kidney disease (CKD) is characterized by a gradual loss of kidney function and affects ~13.4% of the global population. Progressive tubulointerstitial fibrosis, driven in part by proximal tubule (PT) damage, is a hallmark of late stages of CKD and contributes to the development of kidney failure, for which there are limited treatment options. Normal kidney development requires signaling by vitamin A (retinol), which is metabolized to retinoic acid (RA), an endogenous agonist for the RA receptors (RARα, ß, γ). RARα levels are decreased in a mouse model of diabetic nephropathy and restored with RA administration; additionally, RA treatment reduced fibrosis. We developed a mouse model in which a spatiotemporal (tamoxifen-inducible) deletion of RARα in kidney PT cells of adult mice causes mitochondrial dysfunction, massive PT injury, and apoptosis without the use of additional nephrotoxic substances. Long-term effects (3 to 4.5 mo) of RARα deletion include increased PT secretion of transforming growth factor ß1, inflammation, interstitial fibrosis, and decreased kidney function, all of which are major features of human CKD. Therefore, RARα's actions in PTs are crucial for PT homeostasis, and loss of RARα causes injury and a key CKD phenotype.
Assuntos
Rim , Insuficiência Renal Crônica , Receptor alfa de Ácido Retinoico , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Fibrose , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/prevenção & controle , Receptor alfa de Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico/metabolismo , Tretinoína/farmacologia , Tretinoína/metabolismoRESUMO
Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.
Assuntos
Autofagia , Suscetibilidade a Doenças , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Autofagia/imunologia , Biomarcadores , Regulação da Expressão Gênica , Predisposição Genética para Doença , Homeostase , Interações Hospedeiro-Patógeno , Humanos , Especificidade de Órgãos , Transdução de SinaisRESUMO
BACKGROUND: In June 2019, the Bolivian Ministry of Health reported a cluster of cases of hemorrhagic fever that started in the municipality of Caranavi and expanded to La Paz. The cause of these cases was unknown. METHODS: We obtained samples for next-generation sequencing and virus isolation. Human and rodent specimens were tested by means of virus-specific real-time quantitative reverse-transcriptase-polymerase-chain-reaction assays, next-generation sequencing, and virus isolation. RESULTS: Nine cases of hemorrhagic fever were identified; four of the patients with this illness died. The etiologic agent was identified as Mammarenavirus Chapare mammarenavirus, or Chapare virus (CHAPV), which causes Chapare hemorrhagic fever (CHHF). Probable nosocomial transmission among health care workers was identified. Some patients with CHHF had neurologic manifestations, and those who survived had a prolonged recovery period. CHAPV RNA was detected in a variety of human body fluids (including blood; urine; nasopharyngeal, oropharyngeal, and bronchoalveolar-lavage fluid; conjunctiva; and semen) and in specimens obtained from captured small-eared pygmy rice rats (Oligoryzomys microtis). In survivors of CHHF, viral RNA was detected up to 170 days after symptom onset; CHAPV was isolated from a semen sample obtained 86 days after symptom onset. CONCLUSIONS: M. Chapare mammarenavirus was identified as the etiologic agent of CHHF. Both spillover from a zoonotic reservoir and possible person-to-person transmission were identified. This virus was detected in a rodent species, O. microtis. (Funded by the Bolivian Ministry of Health and others.).
Assuntos
Arenavirus do Novo Mundo , Febre Hemorrágica Americana , RNA Viral , Roedores , Animais , Arenavirus do Novo Mundo/genética , Arenavirus do Novo Mundo/isolamento & purificação , Bolívia/epidemiologia , Infecção Hospitalar/transmissão , Infecção Hospitalar/virologia , Transmissão de Doença Infecciosa , Febre Hemorrágica Americana/complicações , Febre Hemorrágica Americana/genética , Febre Hemorrágica Americana/transmissão , Febre Hemorrágica Americana/virologia , Febres Hemorrágicas Virais/genética , Febres Hemorrágicas Virais/transmissão , Febres Hemorrágicas Virais/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reação em Cadeia da Polimerase , RNA Viral/genética , RNA Viral/isolamento & purificação , Ratos/virologia , Roedores/virologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologiaRESUMO
BACKGROUND: Acute respiratory distress syndrome (ARDS), a life-threatening condition characterized by hypoxemia and poor lung compliance, is associated with high mortality. ARDS induced by COVID-19 has similar clinical presentations and pathological manifestations as non-COVID-19 ARDS. However, COVID-19 ARDS is associated with a more protracted inflammatory respiratory failure compared to traditional ARDS. Therefore, a comprehensive molecular comparison of ARDS of different etiologies groups may pave the way for more specific clinical interventions. METHODS AND FINDINGS: In this study, we compared COVID-19 ARDS (n = 43) and bacterial sepsis-induced (non-COVID-19) ARDS (n = 24) using multi-omic plasma profiles covering 663 metabolites, 1,051 lipids, and 266 proteins. To address both between- and within- ARDS group variabilities we followed two approaches. First, we identified 706 molecules differently abundant between the two ARDS etiologies, revealing more than 40 biological processes differently regulated between the two groups. From these processes, we assembled a cascade of therapeutically relevant pathways downstream of sphingosine metabolism. The analysis suggests a possible overactivation of arginine metabolism involved in long-term sequelae of ARDS and highlights the potential of JAK inhibitors to improve outcomes in bacterial sepsis-induced ARDS. The second part of our study involved the comparison of the two ARDS groups with respect to clinical manifestations. Using a data-driven multi-omic network, we identified signatures of acute kidney injury (AKI) and thrombocytosis within each ARDS group. The AKI-associated network implicated mitochondrial dysregulation which might lead to post-ARDS renal-sequalae. The thrombocytosis-associated network hinted at a synergy between prothrombotic processes, namely IL-17, MAPK, TNF signaling pathways, and cell adhesion molecules. Thus, we speculate that combination therapy targeting two or more of these processes may ameliorate thrombocytosis-mediated hypercoagulation. CONCLUSION: We present a first comprehensive molecular characterization of differences between two ARDS etiologies-COVID-19 and bacterial sepsis. Further investigation into the identified pathways will lead to a better understanding of the pathophysiological processes, potentially enabling novel therapeutic interventions.
Assuntos
Injúria Renal Aguda , COVID-19 , Inibidores de Janus Quinases , Síndrome do Desconforto Respiratório , Sepse , Trombocitose , Arginina , COVID-19/complicações , Humanos , Interleucina-17 , Lipídeos , Síndrome do Desconforto Respiratório/etiologia , Sepse/complicações , EsfingosinaRESUMO
Ebola disease (EBOD) in humans is a severe disease caused by at least four related viruses in the genus Orthoebolavirus, most often by the eponymous Ebola virus. Due to human-to-human transmission and incomplete success in treating cases despite promising therapeutic development, EBOD is a high priority in public health research. Yet despite almost 50 years since EBOD was first described, the sources of these viruses remain undefined and much remains to be understood about the disease epidemiology and virus emergence and spread. One important approach to improve our understanding is detection of antibodies that can reveal past human infections. However, serosurveys routinely describe seroprevalences that imply infection rates much higher than those clinically observed. Proposed hypotheses to explain this difference include existence of common but less pathogenic strains or relatives of these viruses, misidentification of EBOD as something else, and a higher proportion of subclinical infections than currently appreciated. The work presented here maps B-cell epitopes in the spike protein of Ebola virus and describes a single epitope that is cross-reactive with an antigen seemingly unrelated to orthoebolaviruses. Antibodies against this epitope appear to explain most of the unexpected reactivity towards the spike, arguing against common but unidentified infections in the population. Importantly, antibodies of cross-reactive donors from within and outside the known EBOD geographic range bound the same epitope. In light of this finding, it is plausible that epitope mapping enables broadly applicable specificity improvements in the field of serology.
Assuntos
Anticorpos Antivirais , Reações Cruzadas , Ebolavirus , Doença pelo Vírus Ebola , Ebolavirus/imunologia , Humanos , Reações Cruzadas/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Doença pelo Vírus Ebola/epidemiologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Epitopos de Linfócito B/imunologia , Proteínas do Envelope Viral/imunologia , Mapeamento de EpitoposRESUMO
Ebola virus disease (Ebola) is a rare but severe illness in humans, with an average case fatality rate of approximately 50%. Two licensed vaccines are currently available against Orthoebolavirus zairense, the virus that causes Ebola: the 1-dose rVSVΔG-ZEBOV-GP (ERVEBO [Merck]) and the 2-dose regimen of Ad26.ZEBOV and MVA-BN-Filo (Zabdeno/Mvabea [Johnson & Johnson]). The Strategic Advisory Group of Experts on Immunization recommends the use of 1-dose ERVEBO during Ebola outbreaks, and in 2021, a global stockpile of ERVEBO was established to ensure equitable, timely, and targeted access to vaccine doses for future Ebola outbreaks. This report describes the use of Ebola vaccines and the role of the stockpile developed and managed by the International Coordinating Group (ICG) on Vaccine Provision during 2021-2023. A total of 145,690 doses have been shipped from the ICG stockpile since 2021. However, because outbreaks since 2021 have been limited and rapidly contained, most doses (139,120; 95%) shipped from the ICG stockpile have been repurposed for preventive vaccination of high-risk groups, compared with 6,570 (5%) used for outbreak response. Repurposing doses for preventive vaccination could be prioritized in the absence of Ebola outbreaks to prevent transmission and maximize the cost-efficiency and benefits of the stockpile.
Assuntos
Surtos de Doenças , Vacinas contra Ebola , Saúde Global , Doença pelo Vírus Ebola , Humanos , Vacinas contra Ebola/administração & dosagem , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/epidemiologia , Surtos de Doenças/prevenção & controle , Estoque Estratégico , Adulto , Criança , AdolescenteRESUMO
Autophagy is a cellular homeostatic program for the turnover of cellular organelles and proteins, in which double-membraned vesicles (autophagosomes) sequester cytoplasmic cargos, which are subsequently delivered to the lysosome for degradation. Emerging evidence implicates autophagy as an important modulator of human disease. Macroautophagy and selective autophagy (e.g., mitophagy, aggrephagy) can influence cellular processes, including cell death, inflammation, and immune responses, and thereby exert both adaptive and maladaptive roles in disease pathogenesis. Autophagy has been implicated in acute kidney injury, which can arise in response to nephrotoxins, sepsis, and ischemia/reperfusion, and in chronic kidney diseases. The latter includes comorbidities of diabetes and recent evidence for chronic obstructive pulmonary disease-associated kidney injury. Roles of autophagy in polycystic kidney disease and kidney cancer have also been described. Targeting the autophagy pathway may have therapeutic benefit in the treatment of kidney disorders.
Assuntos
Autofagia , Nefropatias/patologia , Animais , Humanos , Mitofagia , Insuficiência Renal Crônica/patologiaRESUMO
BACKGROUND: Long-term persistence of Ebola virus (EBOV) in immunologically privileged sites has been implicated in recent outbreaks of Ebola virus disease (EVD) in Guinea and the Democratic Republic of Congo. This study was designed to understand how the acute course of EVD, convalescence, and host immune and genetic factors may play a role in prolonged viral persistence in semen. METHODS: A cohort of 131 male EVD survivors in Liberia were enrolled in a case-case study. "Early clearers" were defined as those with 2 consecutive negative EBOV semen test results by real-time reverse-transcription polymerase chain reaction (rRT-PCR) ≥2 weeks apart within 1 year after discharge from the Ebola treatment unit or acute EVD. "Late clearers" had detectable EBOV RNA by rRT-PCR >1 year after discharge from the Ebola treatment unit or acute EVD. Retrospective histories of their EVD clinical course were collected by questionnaire, followed by complete physical examinations and blood work. RESULTS: Compared with early clearers, late clearers were older (median, 42.5 years; P < .001) and experienced fewer severe clinical symptoms (median 2, P = .006). Late clearers had more lens opacifications (odds ratio, 3.9 [95% confidence interval, 1.1-13.3]; P = .03), after accounting for age, higher total serum immunoglobulin G3 (IgG3) titers (P = .005), and increased expression of the HLA-C*03:04 allele (0.14 [.02-.70]; P = .007). CONCLUSIONS: Older age, decreased illness severity, elevated total serum IgG3 and HLA-C*03:04 allele expression may be risk factors for the persistence of EBOV in the semen of EVD survivors. EBOV persistence in semen may also be associated with its persistence in other immunologically protected sites, such as the eye.
Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Masculino , Ebolavirus/genética , Doença pelo Vírus Ebola/epidemiologia , Sêmen , Libéria/epidemiologia , Estudos Retrospectivos , Antígenos HLA-C , Sobreviventes , Fatores de RiscoRESUMO
Autophagy is a ubiquitous intracellular cytoprotective quality control program that maintains cellular homeostasis by recycling superfluous cytoplasmic components (lipid droplets, protein, or glycogen aggregates) and invading pathogens. Mitophagy is a selective form of autophagy that by recycling damaged mitochondrial material, which can extracellularly act as damage-associated molecular patterns, prevents their release. Autophagy and mitophagy are indispensable for the maintenance of kidney homeostasis and exert crucial functions during both physiological and disease conditions. Impaired autophagy and mitophagy can negatively impact the pathophysiological state and promote its progression. Autophagy helps in maintaining structural integrity of the kidney. Mitophagy-mediated mitochondrial quality control is explicitly critical for regulating cellular homeostasis in the kidney. Both autophagy and mitophagy attenuate inflammatory responses in the kidney. An accumulating body of evidence highlights that persistent kidney injury-induced oxidative stress can contribute to dysregulated autophagic and mitophagic responses and cell death. Autophagy and mitophagy also communicate with programmed cell death pathways (apoptosis and necroptosis) and play important roles in cell survival by preventing nutrient deprivation and regulating oxidative stress. Autophagy and mitophagy are activated in the kidney after acute injury. However, their aberrant hyperactivation can be deleterious and cause tissue damage. The findings on the functions of autophagy and mitophagy in various models of chronic kidney disease are heterogeneous and cell type- and context-specific dependent. In this review, we discuss the roles of autophagy and mitophagy in the kidney in regulating inflammatory responses and during various pathological manifestations.
Assuntos
Mitofagia , Nefrite , Humanos , Autofagia/fisiologia , Rim , InflamaçãoRESUMO
Lymphocytic choriomeningitis virus is an underreported cause of miscarriage and neurologic disease. Surveillance remains challenging because of nonspecific symptomatology, inconsistent case reporting, and difficulties with diagnostic testing. We describe a case of acute lymphocytic choriomeningitis virus disease in a person living with HIV in Connecticut, USA, identified by using quantitative reverse transcription PCR.
Assuntos
Aborto Espontâneo , Infecções por HIV , Coriomeningite Linfocítica , Humanos , Feminino , Gravidez , Vírus da Coriomeningite Linfocítica , Connecticut/epidemiologia , Coriomeningite Linfocítica/diagnóstico , Infecções por HIV/complicaçõesRESUMO
We identified 2 fatal cases of persons infected with hantavirus in Arizona, USA, 2020; 1 person was co-infected with SARS-CoV-2. Delayed identification of the cause of death led to a public health investigation that lasted ≈9 months after their deaths, which complicated the identification of a vector or exposure.
Assuntos
COVID-19 , Doenças Transmissíveis , Infecções por Hantavirus , Orthohantavírus , Humanos , Arizona/epidemiologia , SARS-CoV-2 , Pandemias , Infecções por Hantavirus/diagnóstico , Infecções por Hantavirus/epidemiologiaRESUMO
BACKGROUND: Acute respiratory distress syndrome (ARDS), a life-threatening condition during critical illness, is a common complication of COVID-19. It can originate from various disease etiologies, including severe infections, major injury, or inhalation of irritants. ARDS poses substantial clinical challenges due to a lack of etiology-specific therapies, multisystem involvement, and heterogeneous, poor patient outcomes. A molecular comparison of ARDS groups holds the potential to reveal common and distinct mechanisms underlying ARDS pathogenesis. METHODS: We performed a comparative analysis of urine-based metabolomics and proteomics profiles from COVID-19 ARDS patients (n = 42) and bacterial sepsis-induced ARDS patients (n = 17). To this end, we used two different approaches, first we compared the molecular omics profiles between ARDS groups, and second, we correlated clinical manifestations within each group with the omics profiles. RESULTS: The comparison of the two ARDS etiologies identified 150 metabolites and 70 proteins that were differentially abundant between the two groups. Based on these findings, we interrogated the interplay of cell adhesion/extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis through a multi-omic network approach. Moreover, we identified a proteomic signature associated with mortality in COVID-19 ARDS patients, which contained several proteins that had previously been implicated in clinical manifestations frequently linked with ARDS pathogenesis. CONCLUSION: In summary, our results provide evidence for significant molecular differences in ARDS patients from different etiologies and a potential synergy of extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis. The proteomic mortality signature should be further investigated in future studies to develop prediction models for COVID-19 patient outcomes.
Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Sepse , Humanos , COVID-19/complicações , Proteômica , Multiômica , Síndrome do Desconforto Respiratório/etiologia , Sepse/complicações , InflamaçãoRESUMO
Vascular injury is a well-established, disease-modifying factor in acute respiratory distress syndrome (ARDS) pathogenesis. Recently, coronavirus disease 2019 (COVID-19)-induced injury to the vascular compartment has been linked to complement activation, microvascular thrombosis, and dysregulated immune responses. This study sought to assess whether aberrant vascular activation in this prothrombotic context was associated with the induction of necroptotic vascular cell death. To achieve this, proteomic analysis was performed on blood samples from COVID-19 subjects at distinct time points during ARDS pathogenesis (hospitalized at risk, N = 59; ARDS, N = 31; and recovery, N = 12). Assessment of circulating vascular markers in the at-risk cohort revealed a signature of low vascular protein abundance that tracked with low platelet levels and increased mortality. This signature was replicated in the ARDS cohort and correlated with increased plasma angiopoietin 2 levels. COVID-19 ARDS lung autopsy immunostaining confirmed a link between vascular injury (angiopoietin 2) and platelet-rich microthrombi (CD61) and induction of necrotic cell death [phosphorylated mixed lineage kinase domain-like (pMLKL)]. Among recovery subjects, the vascular signature identified patients with poor functional outcomes. Taken together, this vascular injury signature was associated with low platelet levels and increased mortality and can be used to identify ARDS patients most likely to benefit from vascular targeted therapies.
Assuntos
Angiopoietina-2 , COVID-19 , Necroptose , Síndrome do Desconforto Respiratório , Angiopoietina-2/metabolismo , COVID-19/complicações , Humanos , Proteômica , Síndrome do Desconforto Respiratório/virologiaRESUMO
Extracellular vesicles (EVs) are nanoparticles with a role in intercellular communication. Cell-free mitochondrial DNA (cf-mtDNA) has been associated with cognitive dysfunction in people with HIV (PWH). We conducted a nested case-control study to test the hypothesis that plasma EVs are associated with cf-mtDNA and cognitive dysfunction in older PWH. A machine learning-based model identified total EVs, including select EV subpopulations, as well as urine cf-mtDNA and 4-meter walk time carry power to predict the neurocognitive impairment. These features resulted in an AUC-ROC of 0.845 + / - 0.109 (0.615, 1.00).
Assuntos
Ácidos Nucleicos Livres , Disfunção Cognitiva , Vesículas Extracelulares , Infecções por HIV , Humanos , Idoso , Ácidos Nucleicos Livres/genética , Estudos de Casos e Controles , Disfunção Cognitiva/genética , Disfunção Cognitiva/complicações , DNA Mitocondrial/genética , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológicoRESUMO
Monkeypox (mpox) cases in the 2022 outbreak have primarily occurred among adult gay, bisexual, and other men who have sex with men (MSM); however, other populations have also been affected (1). To date, data on mpox in cisgender women and pregnant persons have been limited. Understanding transmission in these populations is critical for mpox prevention. In addition, among pregnant persons, Monkeypox virus can be transmitted to the fetus during pregnancy or to the neonate through close contact during or after birth (2-5). Adverse pregnancy outcomes, including spontaneous abortion and stillbirth, have been reported in previous mpox outbreaks (3). During May 11-November 7, 2022, CDC and U.S. jurisdictional health departments identified mpox in 769 cisgender women aged ≥15 years, representing 2.7% of all reported mpox cases. Among cases with available data, 44% occurred in cisgender women who were non-Hispanic Black or African American (Black), 25% who were non-Hispanic White (White), and 23% who were Hispanic or Latino (Hispanic). Among cisgender women with available data, 73% reported sexual activity or close intimate contact as the likely route of exposure, with mpox lesions most frequently reported on the legs, arms, and genitals. Twenty-three mpox cases were reported in persons who were pregnant or recently pregnant§; all identified as cisgender women based on the mpox case report form.¶ Four pregnant persons required hospitalization for mpox. Eleven pregnant persons received tecovirimat, and no adverse reactions were reported. Continued studies on mpox transmission risks in populations less commonly affected during the outbreak, including cisgender women and pregnant persons, are important to assess and understand the impact of mpox on sexual, reproductive, and overall health.
Assuntos
Mpox , Feminino , Humanos , Gravidez , Negro ou Afro-Americano , Etnicidade , Hispânico ou Latino , Comportamento Sexual , Estados Unidos/epidemiologia , Brancos , Mpox/epidemiologiaRESUMO
After a pilot study, we tested 443 cadavers using OraQuick Ebola rapid diagnostic tests during surveillance after the 10th Ebola outbreak in the Democratic Republic of the Congo. No false negative and 2% false-positive results were reported. Quickly returning results and engaging the community enabled timely public health actions.
Assuntos
Ebolavirus , Doença pelo Vírus Ebola , República Democrática do Congo/epidemiologia , Testes Diagnósticos de Rotina , Surtos de Doenças , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/epidemiologia , Humanos , Projetos PilotoRESUMO
Macrophages exert critical functions during kidney injury, inflammation, and tissue repair or fibrosis. Mitochondrial structural and functional aberrations due to an imbalance in mitochondrial fusion/fission processes are implicated in the pathogenesis of chronic kidney disease. Therefore, we investigated macrophage-specific functions of mitochondrial fusion proteins, mitofusin (MFN)1 and MFN2, in modulating macrophage mitochondrial dynamics, biogenesis, oxidative stress, polarization, and fibrotic response. MFN1 and MFN2 were found to be suppressed in mice after adenine diet-induced chronic kidney disease, in transforming growth factor-beta 1-treated bone marrow-derived macrophages, and in THP-1-derived human macrophages (a human leukemic cell line). However, abrogating Mfn2 but not Mfn1 in myeloid-lineage cells resulted in greater macrophage recruitment into the kidney during fibrosis and the macrophage-derived fibrotic response associated with collagen deposition culminating in worsening kidney function. Myeloid-specific Mfn1 /Mfn2 double knockout mice also showed increased adenine-induced fibrosis. Mfn2-deficient bone marrow-derived macrophages displayed enhanced polarization towards the profibrotic/M2 phenotype and impaired mitochondrial biogenesis. Macrophages in the kidney of Mfn2-deficient and double knockout but not Mfn1-deficient mice exhibited greater mitochondrial mass, size, oxidative stress and lower mitophagy under fibrotic conditions than the macrophages in the kidney of wild-type mice. Thus, downregulation of MFN2 but not MFN1 lead to macrophage polarization towards a profibrotic phenotype to promote kidney fibrosis through a mechanism involving suppression of macrophage mitophagy and dysfunctional mitochondrial dynamics.
Assuntos
GTP Fosfo-Hidrolases , Insuficiência Renal Crônica , Adenina/metabolismo , Animais , Feminino , Fibrose , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Rim/patologia , Masculino , Camundongos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismoAssuntos
Antivirais , Surtos de Doenças , Doença do Vírus de Marburg , Marburgvirus , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Guiné Equatorial/epidemiologia , Guiné Equatorial/etnologia , Doença do Vírus de Marburg/complicações , Doença do Vírus de Marburg/diagnóstico , Doença do Vírus de Marburg/tratamento farmacológico , Doença do Vírus de Marburg/epidemiologia , Marburgvirus/isolamento & purificação , Antivirais/uso terapêutico , Carga Viral , Pré-Escolar , IdosoRESUMO
This report summarizes the recommendations of the Advisory Committee on Immunization Practices (ACIP) for use of the rVSVΔG-ZEBOV-GP Ebola vaccine (Ervebo) in the United States. The vaccine contains rice-derived recombinant human serum albumin and live attenuated recombinant vesicular stomatitis virus (VSV) in which the gene encoding the glycoprotein of VSV was replaced with the gene encoding the glycoprotein of Ebola virus species Zaire ebolavirus. Persons with a history of severe allergic reaction (e.g., anaphylaxis) to rice protein should not receive Ervebo. This is the first and only vaccine currently licensed by the Food and Drug Administration for the prevention of Ebola virus disease (EVD). These guidelines will be updated based on availability of new data or as new vaccines are licensed to protect against EVD.ACIP recommends preexposure vaccination with Ervebo for adults aged ≥18 years in the U.S. population who are at highest risk for potential occupational exposure to Ebola virus species Zaire ebolavirus because they are responding to an outbreak of EVD, work as health care personnel at federally designated Ebola treatment centers in the United States, or work as laboratorians or other staff at biosafety level 4 facilities in the United States. Recommendations for use of Ervebo in additional populations at risk for exposure and other settings will be considered and discussed by ACIP in the future.
Assuntos
Vacinas contra Ebola/administração & dosagem , Doença pelo Vírus Ebola/prevenção & controle , Adulto , Comitês Consultivos , Doença pelo Vírus Ebola/epidemiologia , Humanos , Estados Unidos/epidemiologia , United States Food and Drug AdministrationRESUMO
On December 19, 2019, the Food and Drug Administration (FDA) approved rVSVΔG-ZEBOV-GP Ebola vaccine (ERVEBO, Merck) for the prevention of Ebola virus disease (EVD) caused by infection with Ebola virus, species Zaire ebolavirus, in adults aged ≥18 years. In February 2020, the Advisory Committee on Immunization Practices (ACIP) recommended preexposure vaccination with ERVEBO for adults aged ≥18 years in the United States who are at highest risk for potential occupational exposure to Ebola virus because they are responding to an outbreak of EVD, work as health care personnel at federally designated Ebola treatment centers in the United States, or work as laboratorians or other staff members at biosafety level 4 facilities in the United States (1).