Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Circulation ; 149(15): 1183-1201, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38099436

RESUMO

BACKGROUND: Atherosclerosis preferentially occurs in arterial regions of disturbed blood flow, and stable flow (s-flow) protects against atherosclerosis by incompletely understood mechanisms. METHODS: Our single-cell RNA-sequencing data using the mouse partial carotid ligation model was reanalyzed, which identified Heart-of-glass 1 (HEG1) as an s-flow-induced gene. HEG1 expression was studied by immunostaining, quantitive polymerase chain reaction, hybridization chain reaction, and Western blot in mouse arteries, human aortic endothelial cells (HAECs), and human coronary arteries. A small interfering RNA-mediated knockdown of HEG1 was used to study its function and signaling mechanisms in HAECs under various flow conditions using a cone-and-plate shear device. We generated endothelial-targeted, tamoxifen-inducible HEG1 knockout (HEG1iECKO) mice. To determine the role of HEG1 in atherosclerosis, HEG1iECKO and littermate-control mice were injected with an adeno-associated virus-PCSK9 [proprotein convertase subtilisin/kexin type 9] and fed a Western diet to induce hypercholesterolemia either for 2 weeks with partial carotid ligation or 2 months without the surgery. RESULTS: S-flow induced HEG1 expression at the mRNA and protein levels in vivo and in vitro. S-flow stimulated HEG1 protein translocation to the downstream side of HAECs and release into the media, followed by increased messenger RNA and protein expression. HEG1 knockdown prevented s-flow-induced endothelial responses, including monocyte adhesion, permeability, and migration. Mechanistically, HEG1 knockdown prevented s-flow-induced KLF2/4 (Kruppel-like factor 2/4) expression by regulating its intracellular binding partner KRIT1 (Krev interaction trapped protein 1) and the MEKK3-MEK5-ERK5-MEF2 pathway in HAECs. Compared with littermate controls, HEG1iECKO mice exposed to hypercholesterolemia for 2 weeks and partial carotid ligation developed advanced atherosclerotic plaques, featuring increased necrotic core area, thin-capped fibroatheroma, inflammation, and intraplaque hemorrhage. In a conventional Western diet model for 2 months, HEG1iECKO mice also showed an exacerbated atherosclerosis development in the arterial tree in both sexes and the aortic sinus in males but not in females. Moreover, endothelial HEG1 expression was reduced in human coronary arteries with advanced atherosclerotic plaques. CONCLUSIONS: Our findings indicate that HEG1 is a novel mediator of atheroprotective endothelial responses to flow and a potential therapeutic target.


Assuntos
Aterosclerose , Hipercolesterolemia , Placa Aterosclerótica , Masculino , Feminino , Humanos , Camundongos , Animais , Placa Aterosclerótica/metabolismo , Pró-Proteína Convertase 9/metabolismo , Células Endoteliais/metabolismo , Hipercolesterolemia/genética , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas de Membrana/metabolismo
2.
Cancer Cell ; 42(1): 70-84.e8, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38194915

RESUMO

Strategies are needed to better identify patients that will benefit from immunotherapy alone or who may require additional therapies like chemotherapy or radiotherapy to overcome resistance. Here we employ single-cell transcriptomics and spatial proteomics to profile triple negative breast cancer biopsies taken at baseline, after one cycle of pembrolizumab, and after a second cycle of pembrolizumab given with radiotherapy. Non-responders lack immune infiltrate before and after therapy and exhibit minimal therapy-induced immune changes. Responding tumors form two groups that are distinguishable by a classifier prior to therapy, with one showing high major histocompatibility complex expression, evidence of tertiary lymphoid structures, and displaying anti-tumor immunity before treatment. The other responder group resembles non-responders at baseline and mounts a maximal immune response, characterized by cytotoxic T cell and antigen presenting myeloid cell interactions, only after combination therapy, which is mirrored in a murine model of triple negative breast cancer.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/radioterapia , Anticorpos Monoclonais Humanizados/uso terapêutico , Terapia Combinada , Imunoterapia
3.
medRxiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38106157

RESUMO

Background: The inflammatory response within the central nervous system is a key driver of secondary brain injury after hemorrhagic stroke, both in patients with intracerebral hemorrhage (ICH) and aneurysmal subarachnoid hemorrhage (aSAH). In this study, we aimed to characterize inflammatory molecules in the blood and cerebrospinal fluid (CSF) of patients within 72 hours of hemorrhage to understand how such molecules vary across disease types and disease severity. Methods: Biological samples were collected from patients admitted to a single-center Neurosciences Intensive Care Unit with a diagnosis of ICH or aSAH between 2014 and 2022. Control CSF samples were collected from patients undergoing CSF diversion for normal pressure hydrocephalus. A panel of immune molecules in the plasma and CSF samples was analyzed using Cytometric Bead Array assays. Clinical variables, including demographics, disease severity, and intensive care unit length of stay were collected. Results: Plasma and/or CSF samples were collected from 260 patients (188 ICH patients, 54 aSAH patients, 18 controls). C-C motif chemokine ligand-2 (CCL2), interleukin-6 (IL-6), granulocyte-colony stimulating factor (G-CSF), interleukin-8 (IL-8), and vascular endothelial growth factor (VEGF), were detectable in the CSF within the first 3 days after hemorrhage, and all were elevated compared to plasma. Compared with controls, CCL2, IL-6, IL-8, G-CSF, and VEGF were elevated in the CSF of both ICH and aSAH patients (p<0.01 for all comparisons). VEGF was increased in ICH patients compared to aSAH patients (p<0.01). CCL2, G-CSF, and VEGF in the CSF were associated with more severe disease in aSAH patients only. Conclusions: Within 3 days of hemorrhagic stroke, proinflammatory molecules can be detected in the CSF at higher concentrations than in the plasma. Early concentrations of some pro-inflammatory molecules may be associated with markers of disease severity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA