Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 76(1): 163-178, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30327840

RESUMO

Low-density lipoprotein receptor-related protein 4 (LRP4) is a multi-functional protein implicated in bone, kidney and neurological diseases including Cenani-Lenz syndactyly (CLS), sclerosteosis, osteoporosis, congenital myasthenic syndrome and myasthenia gravis. Why different LRP4 mutation alleles cause distinct and even contrasting disease phenotypes remain unclear. Herein, we utilized the zebrafish model to search for pathways affected by a deficiency of LRP4. The lrp4 knockdown in zebrafish embryos exhibits cyst formations at fin structures and the caudal vein plexus, malformed pectoral fins, defective bone formation and compromised kidney morphogenesis; which partially phenocopied the human LRP4 mutations and were reminiscent of phenotypes resulting form a perturbed Notch signaling pathway. We discovered that the Lrp4-deficient zebrafish manifested increased Notch outputs in addition to enhanced Wnt signaling, with the expression of Notch ligand jagged1b being significantly elevated at the fin structures. To examine conservatism of signaling mechanisms, the effect of LRP4 missense mutations and siRNA knockdowns, including a novel missense mutation c.1117C > T (p.R373W) of LRP4, were tested in mammalian kidney and osteoblast cells. The results showed that LRP4 suppressed both Wnt/ß-Catenin and Notch signaling pathways, and these activities were perturbed either by LRP4 missense mutations or by a knockdown of LRP4. Our finding underscore that LRP4 is required for limiting Jagged-Notch signaling throughout the fin/limb and kidney development, whose perturbation representing a novel mechanism for LRP4-related diseases. Moreover, our study reveals an evolutionarily conserved relationship between LRP4 and Jagged-Notch signaling, which may shed light on how the Notch signaling is fine-tuned during fin/limb development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Relacionadas a Receptor de LDL/genética , Receptores Notch/metabolismo , Proteínas Serrate-Jagged/metabolismo , Transdução de Sinais , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Nadadeiras de Animais/embriologia , Nadadeiras de Animais/metabolismo , Animais , Extremidades/embriologia , Extremidades/fisiologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Rim/embriologia , Rim/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Mutação , Mutação de Sentido Incorreto , Organogênese , Via de Sinalização Wnt , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
2.
J Org Chem ; 83(7): 3840-3856, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29521504

RESUMO

We developed palladium-catalyzed oxidative coupling of olefins with N-acyl 2-aminobiaryls through a sequence of ortho C-H bond activation/alkene insertion/reductive elimination. Furthermore, we controlled the selectivity of mono- and bis-alkenylation products with the solvent effect. The developed protocol was promising for a broad substrate scope ranging from activated olefins with a wide variety of functional groups to unactivated olefins.

3.
Biochim Biophys Acta ; 1840(9): 2829-42, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24794067

RESUMO

BACKGROUND: Carbonic anhydrase 8 (CA8) is an isozyme of α-carbonic anhydrases (CAs). Previous studies showed that CA8 can be detected in human adult brain, with more intense expression in the cerebellum. Single mutations in CA8 were reported to cause novel syndromes like ataxia, mild mental retardation or the predisposition to quadrupedal gait. METHODS: In the present study, we examine the functions of CA8 in neuronal cell lines, mouse cerebellar granule neurons and zebrafish. RESULTS AND CONCLUSIONS: We demonstrated that overexpression of CA8 in neuronal cells significantly decreased cell death under staurosporine treatment. Moreover, CA8 overexpression significantly increased cell migration and invasion ability in neuronal cells and in mouse cerebellar granule neurons, implicating that CA8 may be involved in neuron motility and oncogenesis. By using zebrafish as an animal model, motor reflection of 3dpf zebrafish embryos was significantly affected after the down-regulation of CA8 through ca8 morpholino. CONCLUSIONS: We concluded that CA8 overexpression desensitizes neuronal cells to STS induced apoptotic stress and increases cell migration and invasion ability in neuronal cells. In addition, down-regulated CA8 decreases neuron mobility in neuronal cells and leads to abnormal calcium release in cerebellar granule neurons. Knockdown of the ca8 gene results in an abnormal movement pattern in zebrafish. GENERAL SIGNIFICANCE: Our findings provide evidence to support that the impaired protective function of CA8 contributes to human neuropathology, and to suggest that zebrafish can be used as an animal model to study the biological functions of human CA8 in vivo.


Assuntos
Biomarcadores Tumorais/biossíntese , Cerebelo/enzimologia , Proteínas do Tecido Nervoso/biossíntese , Doenças do Sistema Nervoso/enzimologia , Neurônios/enzimologia , Proteínas de Peixe-Zebra/biossíntese , Animais , Biomarcadores Tumorais/genética , Linhagem Celular , Cerebelo/patologia , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos ICR , Proteínas do Tecido Nervoso/genética , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Neurônios/patologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
4.
Tumour Biol ; 35(5): 4875-84, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24464249

RESUMO

Developing an effective drug for treating human glioblastoma multiform (GBM) has been investigated persistently. A pure compound butylidenephthalide (BP), isolated from Angelica sinensis, has been shown the activities to arrest the growth and initiate apoptosis of GBM in our previous reports. In this study, we further demonstrated that BP treatment accelerates the cell senescence in a dose-dependent manner in vitro and in vivo. S-phase kinase-associated protein 2 (Skp2), a proto-oncogene, is generally upregulated in cancer. We found that it was downregulated in BP-treated GBM cells. The downregulation of Skp2 is parallel with increasing p16 and p21 expression which causes G0/G1 arrest and tumor cell senescence. We also found that restoring the Skp2 protein level by exogenous overexpression prevents the BP-induced cell senescence. Therefore, the linkage between cell senescence and Skp2 expression is strengthened. Promoter binding analysis further detailed that the BP-mediated SP1 reduction might involve in the Skp2 downregulation. In summary, these results emphasize that BP-triggered senescence in GBM cells is highly associated with its control on Skp2 regulation.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Anidridos Ftálicos/farmacologia , Proteínas Quinases Associadas a Fase S/fisiologia , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Regulação para Baixo , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Proto-Oncogene Mas , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores , Fator de Transcrição Sp1/metabolismo
5.
Nanomedicine ; 10(5): 1097-107, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24486464

RESUMO

This study developed a TiO2/PLGA [poly(lactic-co-glycolic acid)] composite biomaterial, which possesses antibacterial properties but is biocompatible, for artificial dressing applications. A sol-gel method was used for the preparation of the nano TiO2 powder with anatase phase. Several concentration ratios of TiO2 versus PLGA were analyzed to optimize the disinfection efficiency of the composite biomaterial. The antibacterial activity of the fabricated TiO2/PLGA composite was measured against Staphylococcus aureus and Escherichia coli. To evaluate the feasibility of the biomaterial on wound healing in vitro, human keratinocytes (HaCaTs), fibroblasts (L929s), and bovine carotid artery endothelial cells (BECs) were seeded on the TiO2/PLGA composite biofilms. To investigate the histological effect of the biocompatible biofilm in vivo, a rat subcutaneous implantation was performed. Our results show that TiO2/PLGA composite biofilms containing 10% TiO2 nanoparticles have an effective antibacterial property, a good survival rate on HaCaTs and L929s, and relative safe stability in tissue implantation. FROM THE CLINICAL EDITOR: This study reports the development of titanium dioxide-polylactic-co-glycolic acid composite biofilms, which possess antibacterial properties and are biocompatible for dressing applications, as demonstrated in a model system.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Ácido Láctico/química , Ácido Poliglicólico/química , Titânio/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
6.
Dev Dyn ; 242(5): 432-43, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23362214

RESUMO

BACKGROUND: Fibronectin (Fn) forms a centripetal gradient during the fetal adrenal gland organogenesis, and modulates hormone responsiveness of adrenocortical cells in the primary culture. However, how Fn is involved in organ formation of the adrenal gland remains unclear. RESULTS: In this study, we found that Fn accumulates around migrating ff1b-expressing interrenal cells, which were marked by the ff1b promoter-driven transgenic fluorescence, during the course of interrenal organ assembly. The interrenal cells displaying the migratory phenotype were absent in the fn1 mutant, while specification and kidney association of the interrenal tissue remained normal. The Fn deposition in the interrenal microenvironment was severely reduced in the vessel-deficient ets1b morphant, implying its origin of synthesis from the peri-interrenal vasculature. In the fn1 mutant, early-migrating chromaffin cells were capable of interacting with steroidogenic interrenal cells, yet continuous migration and midline convergence of chromaffin cells were disrupted. Migration defects of both interrenal and chromaffin lineages, in the absence of Fn, thus led to incomplete interrenal organ assembly in aberrant positions. CONCLUSIONS: Our results indicate that Fn is essential for patterning interrenal organ formation, by modulating the migratory behavior of both steroidogenic interrenal and chromaffin cells.


Assuntos
Padronização Corporal/genética , Fibronectinas/fisiologia , Glândula Inter-Renal/embriologia , Peixe-Zebra/embriologia , 3-Hidroxiesteroide Desidrogenases/genética , 3-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Animais Geneticamente Modificados , Movimento Celular/genética , Células Cromafins/metabolismo , Células Cromafins/fisiologia , Embrião não Mamífero , Fibronectinas/genética , Fibronectinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Glândula Inter-Renal/metabolismo , Organogênese/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
7.
Phys Chem Chem Phys ; 15(27): 11275-86, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23728083

RESUMO

This study deals with the preparation of multi-shaped nanoscale gold crystals under synthetically simple, green, and efficient conditions using a seed-mediated growth approach in the presence of hyaluronic acid (HA). These highly biocompatible multi-shaped gold nanocrystals were examined to evaluate their catalytic and surface enhanced Raman scattering (SERS) properties. The results show that the size and shape of the nanocrystals are mainly correlated to the amount of seed, seed size, HA concentration, and reaction temperature. Gold seeds accelerate the reduction of the gold precursor to form gold nanocrystals using HA. The HA serves as a reducing agent and a growth template for the reduction of Au(III) and nanocrystal stabilization. The multi-shaped gold nanocrystals showed superior catalytic properties and higher SERS performance. The simple, green approach efficiently controls the nanocrystals and creates many opportunities for future applications.


Assuntos
Biopolímeros/química , Materiais Revestidos Biocompatíveis/química , Ouro/química , Química Verde , Ácido Hialurônico/química , Nanopartículas Metálicas/química , Catálise , Análise Espectral Raman , Propriedades de Superfície
8.
PLoS One ; 18(10): e0292858, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37903128

RESUMO

RATIONALE: Cilostazol, an anti-platelet phosphodiesterase-3 inhibitor used for the treatment of intermittent claudication, is known for its pleiotropic effects on platelets, endothelial cells and smooth muscle cells. However, how cilostazol impacts the endocrine system and the injury-induced inflammatory processes remains unclear. METHODS: We used the zebrafish, a simple transparent model that demonstrates rapid development and a strong regenerative ability, to test whether cilostazol influences heart rate, steroidogenesis, and the temporal and dosage effects of cilostazol on innate immune cells during tissue damage and repair. RESULTS: While dosages of cilostazol from 10 to 100 µM did not induce any noticeable morphological abnormality in the embryonic and larval zebrafish, the heart rate was increased as measured by ImageJ TSA method. Moreover, adrenal/interrenal steroidogenesis in larval zebrafish, analyzed by whole-mount 3ß-Hsd enzymatic activity and cortisol ELISA assays, was significantly enhanced. During embryonic fin amputation and regeneration, cilostazol treatments led to a subtle yet significant effect on reducing the aggregation of Mpx-expressing neutrophil at the lesion site, but did not affect the immediate injury-induced recruitment and retention of Mpeg1-expressing macrophages. CONCLUSIONS: Our results indicate that cilostazol has a significant effect on the heart rate and the growth as well as endocrine function of steroidogenic tissue; with a limited effect on the migration of innate immune cells during tissue damage and repair.


Assuntos
Inibidores da Agregação Plaquetária , Peixe-Zebra , Animais , Cilostazol/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico , Células Endoteliais , Frequência Cardíaca , Tetrazóis/uso terapêutico , Imunidade Inata
9.
Cell Rep ; 42(9): 113067, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37659081

RESUMO

Tumor-associated macrophages (TAMs) are integral to the development of complex tumor microenvironments (TMEs) and can execute disparate cellular programs in response to extracellular cues. However, upstream signaling processes underpinning this phenotypic plasticity remain to be elucidated. Here, we report that concordant AXL-STAT3 signaling in TAMs is triggered by lung cancer cells or cancer-associated fibroblasts in the cytokine milieu. This paracrine action drives TAM differentiation toward a tumor-promoting "M2-like" phenotype with upregulation of CD163 and putative mesenchymal markers, contributing to TAM heterogeneity and diverse cellular functions. One of the upregulated markers, CD44, mediated by AXL-IL-11-pSTAT3 signaling cascade, enhances macrophage ability to interact with endothelial cells and facilitate formation of primitive vascular networks. We also found that AXL-STAT3 inhibition can impede the recruitment of TAMs in a xenograft mouse model, thereby suppressing tumor growth. These findings suggest the potential application of AXL-STAT3-related markers to quantitatively assess metastatic potential and inform therapeutic strategies in lung cancer.


Assuntos
Neoplasias Pulmonares , Macrófagos Associados a Tumor , Humanos , Animais , Camundongos , Células Endoteliais , Transdução de Sinais , Diferenciação Celular , Microambiente Tumoral , Linhagem Celular Tumoral
10.
Nat Commun ; 14(1): 6569, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848444

RESUMO

While macrophage phagocytosis is an immune defense mechanism against invading cellular organisms, cancer cells expressing the CD47 ligand send forward signals to repel this engulfment. Here we report that the reverse signaling using CD47 as a receptor additionally enhances a pro-survival function of prostate cancer cells under phagocytic attack. Although low CD47-expressing cancer cells still allow phagocytosis, the reverse signaling delays the process, leading to incomplete digestion of the entrapped cells and subsequent tumor hybrid cell (THC) formation. Viable THCs acquire c-Myc from parental cancer cells to upregulate both M1- and M2-like macrophage polarization genes. Consequently, THCs imitating dual macrophage features can confound immunosurveillance, gaining survival advantage in the host. Furthermore, these cells intrinsically express low levels of androgen receptor and its targets, resembling an adenocarcinoma-immune subtype of metastatic castration-resistant prostate cancer. Therefore, phagocytosis-generated THCs may represent a potential target for treating the disease.


Assuntos
Antígeno CD47 , Macrófagos , Metástase Neoplásica , Fagocitose , Proteínas Proto-Oncogênicas c-myc , Evasão Tumoral , Humanos , Masculino , Proteínas de Transporte , Antígeno CD47/metabolismo , Macrófagos/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/imunologia , Transdução de Sinais , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Metástase Neoplásica/genética , Metástase Neoplásica/imunologia , Células Tumorais Cultivadas
11.
Dev Dyn ; 239(7): 1995-2004, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20549735

RESUMO

During zebrafish embryogenesis, the endothelium signals to emergent bilateral interrenal primordia to converge toward the midline, yet the merged interrenal tissue has been found to be situated lateral to the midline. We show in this study that bilateral interrenal tissue clusters fused at the central midline, before relocating laterally to be juxtaposed between the dorsal aorta and the posterior cardinal vein. In ets1b morphants where the midtrunk vasculature failed to assemble, various degrees of interrenal fusion defects were displayed, and the interrenal laterality was lost. As either arterial or venous endothelium was specifically reduced, the interrenal tissue was defective in its relocalization and laterality, yet remained closely associated with the malformed vasculature. Our results showed evidence to support that assembly of the axial artery and vein, and its resulting vascular topology at the midtrunk, is required for patterning relocalization and laterality of the interrenal tissue after the initial medial fusion.


Assuntos
Artérias/embriologia , Veias/embriologia , Peixe-Zebra/embriologia , Animais , Hibridização In Situ , Microscopia Confocal
12.
J Transl Genet Genom ; 5: 1-21, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322662

RESUMO

Among single-cell analysis technologies, single-cell RNA-seq (scRNA-seq) has been one of the front runners in technical inventions. Since its induction, scRNA-seq has been well received and undergone many fast-paced technical improvements in cDNA synthesis and amplification, processing and alignment of next generation sequencing reads, differentially expressed gene calling, cell clustering, subpopulation identification, and developmental trajectory prediction. scRNA-seq has been exponentially applied to study global transcriptional profiles in all cell types in humans and animal models, healthy or with diseases, including cancer. Accumulative novel subtypes and rare subpopulations have been discovered as potential underlying mechanisms of stochasticity, differentiation, proliferation, tumorigenesis, and aging. scRNA-seq has gradually revealed the uncharted territory of cellular heterogeneity in transcriptomes and developed novel therapeutic approaches for biomedical applications. This review of the advancement of scRNA-seq methods provides an exploratory guide of the quickly evolving technical landscape and insights of focused features and strengths in each prominent area of progress.

13.
Cancers (Basel) ; 12(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971831

RESUMO

The interplay between glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) is central to maintain energy homeostasis. It remains to be determined whether there is a mechanism governing metabolic fluxes based on substrate availability in microenvironments. Here we show that menin is a key transcription factor regulating the expression of OXPHOS and glycolytic genes in cancer cells and primary tumors with poor prognosis. A group of menin-associated proteins (MAPs), including KMT2A, MED12, WAPL, and GATA3, is found to restrain menin's full function in this transcription regulation. shRNA knockdowns of menin and MAPs result in reduced ATP production with proportional alterations of cellular energy generated through glycolysis and OXPHOS. When shRNA knockdown cells are exposed to metabolic stress, the dual functionality can clearly be distinguished among these metabolic regulators. A MAP can negatively counteract the regulatory mode of menin for OXPHOS while the same protein positively influences glycolysis. A close-proximity interaction between menin and MAPs allows transcriptional regulation for metabolic adjustment. This coordinate regulation by menin and MAPs is necessary for cells to rapidly adapt to fluctuating microenvironments and to maintain essential metabolic functions.

14.
BMC Med Genomics ; 13(1): 69, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32408897

RESUMO

BACKGROUND: Chromothripsis is an event of genomic instability leading to complex chromosomal alterations in cancer. Frequent long-range chromatin interactions between transcription factors (TFs) and targets may promote extensive translocations and copy-number alterations in proximal contact regions through inappropriate DNA stitching. Although studies have proposed models to explain the initiation of chromothripsis, few discussed how TFs influence this process for tumor progression. METHODS: This study focused on genomic alterations in amplification associated regions within chromosome 17. Inter-/intra-chromosomal rearrangements were analyzed using whole genome sequencing data of breast tumors in the Cancer Genome Atlas (TCGA) cohort. Common ERα binding sites were defined based on MCF-7, T47D, and MDA-MB-134 breast cancer cell lines using univariate K-means clustering methods. Nanopore sequencing technology was applied to validate frequent rearrangements detected between ATC loci on 17q23 and an ERα hub on 20q13. The efficacy of pharmacological inhibition of a potentially druggable target gene on 17q23 was evaluated using breast cancer cell lines and patient-derived circulating breast tumor cells. RESULTS: There are five adjoining regions from 17q11.1 to 17q24.1 being hotspots of chromothripsis. Inter-/intra-chromosomal rearrangements of these regions occurred more frequently in ERα-positive tumors than in ERα-negative tumors. In addition, the locations of the rearrangements were often mapped within or close to dense ERα binding sites localized on these five 17q regions or other chromosomes. This chromothriptic event was linked to concordant upregulation of 96 loci that predominantly regulate cell-cycle machineries in advanced luminal tumors. Genome-editing analysis confirmed that an ERα hub localized on 20q13 coordinately regulates a subset of these loci localized on 17q23 through long-range chromosome interactions. One of these loci, Tousled Like Kinase 2 (TLK2) known to participate in DNA damage checkpoint control, is an actionable target using phenothiazine antipsychotics (PTZs). The antiproliferative effect of PTZs was prominent in high TLK2-expressing cells, compared to low expressing cells. CONCLUSION: This study demonstrates a new approach for identifying tumorigenic drivers from genomic regions highly susceptible to ERα-related chromothripsis. We found a group of luminal breast tumors displaying 17q-related chromothripsis for which antipsychotics can be repurposed as treatment adjuncts.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Cromossomos Humanos Par 17/genética , Cromotripsia , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular , Proliferação de Células , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Prognóstico , Taxa de Sobrevida , Transcrição Gênica , Células Tumorais Cultivadas , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
15.
Cancer Res ; 80(7): 1551-1563, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31992541

RESUMO

Cytometry by time-of-flight (CyTOF) simultaneously measures multiple cellular proteins at the single-cell level and is used to assess intertumor and intratumor heterogeneity. This approach may be used to investigate the variability of individual tumor responses to treatments. Herein, we stratified lung tumor subpopulations based on AXL signaling as a potential targeting strategy. Integrative transcriptome analyses were used to investigate how TP-0903, an AXL kinase inhibitor, influences redundant oncogenic pathways in metastatic lung cancer cells. CyTOF profiling revealed that AXL inhibition suppressed SMAD4/TGFß signaling and induced JAK1-STAT3 signaling to compensate for the loss of AXL. Interestingly, high JAK1-STAT3 was associated with increased levels of AXL in treatment-naïve tumors. Tumors with high AXL, TGFß, and JAK1 signaling concomitantly displayed CD133-mediated cancer stemness and hybrid epithelial-to-mesenchymal transition features in advanced-stage patients, suggesting greater potential for distant dissemination. Diffusion pseudotime analysis revealed cell-fate trajectories among four different categories that were linked to clinicopathologic features for each patient. Patient-derived organoids (PDO) obtained from tumors with high AXL and JAK1 were sensitive to TP-0903 and ruxolitinib (JAK inhibitor) treatments, supporting the CyTOF findings. This study shows that single-cell proteomic profiling of treatment-naïve lung tumors, coupled with ex vivo testing of PDOs, identifies continuous AXL, TGFß, and JAK1-STAT3 signal activation in select tumors that may be targeted by combined AXL-JAK1 inhibition. SIGNIFICANCE: Single-cell proteomic profiling of clinical samples may facilitate the optimal selection of novel drug targets, interpretation of early-phase clinical trial data, and development of predictive biomarkers valuable for patient stratification.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Janus Quinase 1/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Idoso , Idoso de 80 Anos ou mais , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Estudos de Viabilidade , Feminino , Citometria de Fluxo/métodos , Humanos , Janus Quinase 1/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Nitrilas , Inibidores de Proteínas Quinases/uso terapêutico , Proteômica/métodos , Proteínas Proto-Oncogênicas/metabolismo , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , RNA-Seq , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única/métodos , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Análise Serial de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
16.
Cancers (Basel) ; 11(12)2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805710

RESUMO

Advanced prostate cancer is a very heterogeneous disease reflecting in diverse regulations of oncogenic signaling pathways. Aberrant spatial dynamics of epidermal growth factor receptor (EGFR) promote their dimerization and clustering, leading to constitutive activation in oncogenesis. The EphB2 and Src signaling pathways are associated with the reorganization of the cytoskeleton leading to malignancy, but their roles in regulating EGFR dynamics and activation are scarcely reported. Using single-particle tracking techniques, we found that highly phosphorylated EGFR in the advanced prostate cancer cell line, PC3, was associated with higher EGFR diffusivity, as compared with LNCaP and less aggressive DU145. The increased EGFR activation and biophysical dynamics were consistent with high proliferation, migration, and invasion. After performing single-cell RNA-seq on prostate cancer cell lines and circulating tumor cells from patients, we identified that upregulated gene expression in the EphB2 and Src pathways are associated with advanced malignancy. After dasatinib treatment or siRNA knockdowns of EphB2 or Src, the PC3 cells exhibited significantly lower EGFR dynamics, cell motility, and invasion. Partial inhibitory effects were also found in DU145 cells. The upregulation of parts of the EphB2 and Src pathways also predicts poor prognosis in the prostate cancer patient cohort of The Cancer Genome Atlas. Our results provide evidence that overexpression of the EphB2 and Src signaling pathways regulate EGFR dynamics and cellular aggressiveness in some advanced prostate cancer cells.

17.
Endocrinology ; 158(12): 4206-4217, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029162

RESUMO

Although the zebrafish interrenal tissue has been used as a model for steroidogenesis and genesis of the adrenal gland, its specification and morphogenesis remains largely unclear. In the present study, we explored how the Wilms tumor 1 (WT1)-expressing cells are segregated from the SF-1-expressing steroidogenic cells in the zebrafish model. The interrenal tissue precursors expressing ff1b, the equivalent of mammalian SF-1, were derived from wt1-expressing pronephric primordia in the zebrafish embryo. Through histochemistry and in situ hybridization, we demonstrated that the size of functionally differentiated interrenal tissue was substantially increased on global inhibition of the Notch signaling pathway and was accompanied by a disrupted segregation between the wt1- and ff1b-expressing cells. As the Notch pathway was conditionally activated during interrenal specification, differentiation, but not ff1b expression, of interrenal tissue was drastically compromised. In embryos deficient for Notch ligands jagged 1b and 2b, transgenic reporter activity of wt1b promoter was detected within the steroidogenic interrenal tissue. In conclusion, our results indicate that Jagged-Notch signaling is required (1) for segregation between wt1-expressing cells and differentiated steroidogenic tissue; and (2) to modulate the extent of functional differentiation in the steroidogenic interrenal tissue.


Assuntos
Proteína Jagged-1/genética , Proteína Jagged-2/genética , Receptores Notch/genética , Transdução de Sinais/genética , Proteínas WT1/genética , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Rim Cefálico/citologia , Rim Cefálico/embriologia , Rim Cefálico/metabolismo , Hibridização In Situ , Glândula Inter-Renal/citologia , Glândula Inter-Renal/embriologia , Glândula Inter-Renal/metabolismo , Proteína Jagged-1/metabolismo , Proteína Jagged-2/metabolismo , Receptores Notch/metabolismo , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Esteroides/biossíntese , Proteínas WT1/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
18.
J Vis Exp ; (118)2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28060344

RESUMO

This protocol introduces how to detect differentiated interrenal steroidogenic cells through a simple whole-mount enzymatic activity assay. Identifying differentiated steroidogenic tissues through chromogenic histochemical staining of 3-ß-Hydroxysteroid dehydrogenase /Δ5-4 isomerase (3ß-Hsd) activity-positive cells is critical for monitoring the morphology and differentiation of adrenocortical and interrenal tissues in mammals and teleosts, respectively. In the zebrafish model, the optical transparency and tissue permeability of the developing embryos and larvae allow for whole-mount staining of 3ß-Hsd activity. This staining protocol, as performed on transgenic fluorescent reporter lines marking the developing pronephric and endothelial cells, enables the detection of the steroidogenic interrenal tissue in addition to the kidney and neighboring vasculature. In combination with vibratome sectioning, immunohistochemistry, and confocal microscopy, we can visualize and assay the vascular microenvironment of interrenal steroidogenic tissues. The 3ß-Hsd activity assay is essential for studying the cell biology of the zebrafish interrenal gland because to date, no suitable antibody is available for labeling zebrafish steroidogenic cells. Furthermore, this assay is rapid and simple, thus providing a powerful tool for mutant screens targeting adrenal (interrenal) genetic disorders as well as for determining disruption effects of chemicals on steroidogenesis in pharmaceutical or toxicological studies.


Assuntos
3-Hidroxiesteroide Desidrogenases/metabolismo , Glândula Inter-Renal/citologia , Coloração e Rotulagem/métodos , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra , Animais , Animais Geneticamente Modificados
19.
Anal Sci ; 32(2): 255-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26860576

RESUMO

Multiphoton ionization time-of-flight mass spectrometry (MPI-TOFMS) combined with a pulsed laser for sample vaporization was developed for the detection of a low-volatile compound in a solution. A solution containing Taiwanin A ((3E,4E)-3,4-bis(1,3-benzodioxol-5-ylmethylene)dihydro-2(3H)-furanone), which is a lignan that has an anticancer effect, was employed in the present study. Consequently, Taiwanin A could be detected by irradiating a laser pulse for vaporization to an inlet nozzle, rather than by heating. Therefore, the present method could be effective for detecting compounds with lower volatilities in a liquid sample.


Assuntos
Furanos/análise , Furanos/química , Lignanas/análise , Lignanas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Antineoplásicos/química , Temperatura Alta , Lasers , Ligantes , Fótons , Soluções , Volatilização
20.
Sci Rep ; 6: 30677, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27477767

RESUMO

Integration of blood vessels and organ primordia determines organ shape and function. The head kidney in the zebrafish interacts with the dorsal aorta (DA) and the posterior cardinal vein (PCV) to achieve glomerular filtration and definitive hematopoiesis, respectively. How the head kidney co-develops with both the axial artery and vein remains unclear. We found that in endodermless sox32-deficient embryos, the head kidney associated with the PCV but not the DA. Disrupted convergent migration of the PCV and the head kidney in sox32-deficient embryos was rescued in a highly coordinated fashion through the restoration of endodermal cells. Moreover, grafted endodermal cells abutted the host PCV endothelium in the transplantation assay. Interestingly, the severely-disrupted head kidney convergence in the sox32-deficient embryo was suppressed by both the cloche mutation and the knockdown of endothelial genes, indicating that an interaction between the endoderm and the PCV restricts the migration of the head kidney. Furthermore, knockdown of either vegfC or its receptor vegfr3 suppressed the head kidney convergence defect in endodermless embryos and perturbed the head kidney-PCV association in wild-type embryos. Our findings thus underscore a role for PCV and VegfC in patterning the head kidney prior to organ assembly and function.


Assuntos
Endoderma/embriologia , Rim Cefálico/embriologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Veias/embriologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Padronização Corporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA