Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(38): 23721-23729, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900949

RESUMO

Clinical studies combining radiation and immunotherapy have shown promising response rates, strengthening efforts to sensitize tumors to immune-mediated attack. Thus, there is an ongoing surge in trials using preconditioning regimens with immunotherapy. Yet, due to the scarcity of resected tumors treated in situ with radiotherapy, there has been little investigation of radiation's sole contributions to local and systemic antitumor immunity in patients. Without this access, translational studies have been limited to evaluating circulating immune subsets and systemic remodeling of peripheral T cell receptor repertoires. This constraint has left gaps in how radiation impacts intratumoral responses and whether tumor-resident T cell clones are amplified following treatment. Therefore, to interrogate the immune impact of radiation on the tumor microenvironment and test the hypothesis that radiation initiates local and systemic expansion of tumor-resident clones, we analyzed renal cell carcinomas from patients treated with stereotactic body radiation therapy. Transcriptomic comparisons were evaluated by bulk RNA sequencing. T cell receptor sequencing monitored repertoires during treatment. Pathway analysis showed radiation-specific enrichment of immune-related processes, and T cell receptor sequencing revealed increased clonality in radiation-treated tumors. The frequency of identified, tumor-enriched clonotypes was tracked across serial blood samples. We observed increased abundance of tumor-enriched clonotypes at 2 wk postradiation compared with pretreatment levels; however, this expansion was not sustained, and levels contracted toward baseline by 4 wk posttreatment. Taken together, these results indicate robust intratumoral immune remodeling and a window of tumor-resident T cell expansion following radiation that may be leveraged for the rational design of combinatorial strategies.


Assuntos
Carcinoma de Células Renais/radioterapia , Neoplasias Renais/radioterapia , Radiocirurgia/efeitos adversos , Linfócitos T/efeitos da radiação , Transcriptoma/efeitos da radiação , Idoso , Carcinoma de Células Renais/patologia , Feminino , Humanos , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Microambiente Tumoral/efeitos da radiação
2.
J Cell Sci ; 133(7)2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32079658

RESUMO

All cells establish and maintain an axis of polarity that is critical for cell shape and progression through the cell cycle. A well-studied example of polarity establishment is bud emergence in the yeast Saccharomyces cerevisiae, which is controlled by the Rho GTPase Cdc42p. The prevailing view of bud emergence does not account for regulation by extrinsic cues. Here, we show that the filamentous growth mitogen activated protein kinase (fMAPK) pathway regulates bud emergence under nutrient-limiting conditions. The fMAPK pathway regulated the expression of polarity targets including the gene encoding a direct effector of Cdc42p, Gic2p. The fMAPK pathway also stimulated GTP-Cdc42p levels, which is a critical determinant of polarity establishment. The fMAPK pathway activity was spatially restricted to bud sites and active during the period of the cell cycle leading up to bud emergence. Time-lapse fluorescence microscopy showed that the fMAPK pathway stimulated the rate of bud emergence during filamentous growth. Unregulated activation of the fMAPK pathway induced multiple rounds of symmetry breaking inside the growing bud. Collectively, our findings identify a new regulatory aspect of bud emergence that sensitizes this essential cellular process to external cues.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Diferenciação Celular , Polaridade Celular/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/genética , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo
3.
Proc Natl Acad Sci U S A ; 113(14): E2019-28, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27001830

RESUMO

A fundamental problem in cell biology is to understand how spatial information is recognized and integrated into morphogenetic responses. Budding yeast undergoes differentiation to filamentous growth, which involves changes in cell polarity through mechanisms that remain obscure. Here we define a regulatory input where spatial landmarks (bud-site-selection proteins) regulate the MAPK pathway that controls filamentous growth (fMAPK pathway). The bud-site GTPase Rsr1p regulated the fMAPK pathway through Cdc24p, the guanine nucleotide exchange factor for the polarity establishment GTPase Cdc42p. Positional landmarks that direct Rsr1p to bud sites conditionally regulated the fMAPK pathway, corresponding to their roles in regulating bud-site selection. Therefore, cell differentiation is achieved in part by the reorganization of polarity at bud sites. In line with this conclusion, dynamic changes in budding pattern during filamentous growth induced corresponding changes in fMAPK activity. Intrinsic compromise of bud-site selection also impacted fMAPK activity. Therefore, a surveillance mechanism monitors spatial position in response to extrinsic and intrinsic stress and modulates the response through a differentiation MAPK pathway.


Assuntos
Sistema de Sinalização das MAP Quinases , Saccharomyces cerevisiae/metabolismo , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo
5.
Can Assoc Radiol J ; 74(3): 480-482, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37791721
6.
Can Assoc Radiol J ; 74(4): 607-609, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38078700
8.
Sensors (Basel) ; 14(2): 3293-307, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24556668

RESUMO

The Microsoft Kinect is arguably the most popular RGB-D camera currently on the market, partially due to its low cost. It offers many advantages for the measurement of dynamic phenomena since it can directly measure three-dimensional coordinates of objects at video frame rate using a single sensor. This paper presents the results of an investigation into the development of a Microsoft Kinect-based system for measuring the deflection of reinforced concrete beams subjected to cyclic loads. New segmentation methods for object extraction from the Kinect's depth imagery and vertical displacement reconstruction algorithms have been developed and implemented to reconstruct the time-dependent displacement of concrete beams tested in laboratory conditions. The results demonstrate that the amplitude and frequency of the vertical displacements can be reconstructed with submillimetre and milliHz-level precision and accuracy, respectively.

9.
Diagnostics (Basel) ; 14(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38473039

RESUMO

Single-plane fluoroscopy systems with image intensifiers remain commonly employed in a clinical setting. The imagery they capture is vulnerable to several types of geometric distortions introduced by the system's components and their assembly as well as interactions with the local and global magnetic fields. In this study, the application of a self-calibrating bundle adjustment is investigated as a method to correct geometric distortions in single-plane fluoroscopic imaging systems. The resulting calibrated imagery is then applied in the quantitative analysis of diaphragmatic motion and potential diagnostic applications to hemidiaphragm paralysis. The calibrated imagery is further explored and discussed in its potential impact on areas of surgical navigation. This work was accomplished through the application of a controlled experiment with three separate Philips Easy Diagnost R/F Systems. A highly redundant (~2500 to 3500 degrees-of-freedom) and geometrically strong network of 18 to 22 images of a low-cost target field was collected. The target field comprised 121 pre-surveyed tantalum beads embedded on a 25.4 mm × 25.4 mm acrylic base plate. The modeling process resulted in the estimation of five to eight distortion coefficients, depending on the system. The addition of these terms resulted in 83-85% improvement in terms of image point precision (model fit) and 85-95% improvement in 3D object reconstruction accuracy after calibration. This study demonstrates significant potential in enhancing the accuracy and reliability of fluoroscopic imaging, thereby improving the overall quality and effectiveness of medical diagnostics and treatments.

10.
Sensors (Basel) ; 13(6): 7224-49, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23727956

RESUMO

Terrestrial laser scanners are sophisticated instruments that operate much like high-speed total stations. It has previously been shown that unmodelled systematic errors can exist in modern terrestrial laser scanners that deteriorate their geometric measurement precision and accuracy. Typically, signalised targets are used in point-based self-calibrations to identify and model the systematic errors. Although this method has proven its effectiveness, a large quantity of signalised targets is required and is therefore labour-intensive and limits its practicality. In recent years, feature-based self-calibration of aerial, mobile terrestrial, and static terrestrial laser scanning systems has been demonstrated. In this paper, the commonalities and differences between point-based and plane-based self-calibration (in terms of model identification and parameter correlation) are explored. The results of this research indicate that much of the knowledge from point-based self-calibration can be directly transferred to plane-based calibration and that the two calibration approaches are nearly equivalent. New network configurations, such as the inclusion of tilted scans, were also studied and prove to be an effective means for strengthening the self-calibration solution, and improved recoverability of the horizontal collimation axis error for hybrid scanners, which has always posed a challenge in the past.

11.
J Immunother Cancer ; 11(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37080610

RESUMO

BACKGROUND: Studies evaluating peripheral patient samples show radiation can modulate immune responses, yet the biological changes in human tumors particularly at the cellular level remain largely unknown. Here, we address how radiation treatment shapes the immune compartment and interactions with cancer cells within renal cell carcinoma (RCC) patient tumors. METHODS: To identify how radiation shaped the immune compartment and potential immune interactions with tumor cells we evaluated RCC tumors from patients treated only with nephrectomy or with radiation followed by nephrectomy. Spectral flow cytometry using a 35-marker panel was performed on cell suspensions to evaluate protein expression within immune subsets. To reveal how radiation alters programming of immune populations and interactions with tumor cells, we examined transcriptional changes by single-cell RNA sequencing (scRNAseq). RESULTS: Spectral flow cytometry analysis revealed increased levels of early-activated as well as effector programmed cell death protein-1 (PD-1)+ CD8 T-cell subsets within irradiated tumors. Following quality control, scRNAseq of tumor samples from nephrectomy-only or radiation followed by nephrectomy-treated patients generated an atlas containing 34,626 total cells. Transcriptional analysis revealed increased transition from stem-like T-cell populations to effector T cells in irradiated tumors. Interferon (IFN) pathways, that are central to radiation-induced immunogenicity, were enriched in irradiated lymphoid, myeloid, and cancer cell populations. Focused cancer cell analysis showed enhanced antigen presentation and increased predicted TRAIL-mediated and IFN-mediated interactions between tumor cells and the same effector T-cell subsets increased by radiation. TRAIL and IFN pathways enriched in irradiated tumors were associated with survival in patients treated with immunotherapy. CONCLUSIONS: These findings identify the source of IFN enrichment within irradiated RCC and reveal heightened levels of PD-1+ CD8+ T-cell subsets and increased probability of interactions with tumor cells following standalone radiation treatment. This study provides a window into the irradiated tumor-immune microenvironment of patients and rationale for treatment combinations.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Receptor de Morte Celular Programada 1/metabolismo , Subpopulações de Linfócitos T , Imunoterapia , Microambiente Tumoral
12.
Radiol Case Rep ; 17(5): 1750-1754, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35355529

RESUMO

The current imaging gold standard for detecting paradoxical diaphragm motion and diagnosing hemidiaphragm paralysis is to perform the fluoroscopic sniff test. The images are visually examined by an experienced radiologist, and if one hemidiaphragm ascends while the other descends, then it is described as paradoxical motion, which is highly suggestive of hemidiaphragm paralysis. However, diagnosis can be challenging because diaphragm motion during sniffing is fast, paradoxical motion can be subtle, and the analysis is based on a 2-dimensional projection of a 3-dimensional surface. This paper presents a case of chronic left hemidiaphragm elevation that was initially reported as mild paradoxical motion on fluoroscopy. After measuring the elevations of the diaphragms and modeling their temporal correlation using Gaussian process regression, the systematic trend of the hemidiaphragmatic motion along with its stochastic properties was determined. When analyzing the trajectories of the hemidiaphragms, no statistically significant paradoxical motion was detected. This could potentially change the prognosis if the patient was to consider diaphragm plication as treatment. The presented method provides a more objective analysis of hemidiaphragm motions and can potentially improve diagnostic accuracy.

13.
IEEE Trans Med Imaging ; 39(6): 2051-2060, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31902759

RESUMO

Fluoroscopic imaging that captures X-ray images at video framerates is advantageous for guiding catheter insertions by vascular surgeons and interventional radiologists. Visualizing the dynamical movements non-invasively allows complex surgical procedures to be performed with less trauma to the patient. To improve surgical precision, endovascular procedures can benefit from more accurate fluoroscopy data via calibration. This paper presents a robust self-calibration algorithm suitable for single-plane and dual-plane fluoroscopy. A three-dimensional (3D) target field was imaged by the fluoroscope in a strong geometric network configuration. The unknown 3D positions of targets and the fluoroscope pose were estimated simultaneously by maximizing the likelihood of the Student-t probability distribution function. A smoothed k-nearest-neighbour (kNN) regression is then used to model the deterministic component of the image reprojection error of the robust bundle adjustment. The Maximum Likelihood Estimation step and the kNN regression step are then repeated iteratively until convergence. Four different error modeling schemes were compared while varying the quantity of training images. It was found that using a smoothed kNN regression can automatically model the systematic errors in fluoroscopy with similar accuracy as a human expert using a small training dataset. When all training images were used, the 3D mapping error was reduced from 0.61-0.83 mm to 0.04 mm post-calibration (94.2-95.7% improvement), and the 2D reprojection error was reduced from 1.17-1.31 to 0.20-0.21 pixels (83.2-83.8% improvement). When using biplanar fluoroscopy, the 3D measurement accuracy of the system improved from 0.60 mm to 0.32 mm (47.2% improvement).


Assuntos
Algoritmos , Imageamento Tridimensional , Calibragem , Fluoroscopia , Humanos , Aprendizado de Máquina Supervisionado , Raios X
14.
mSphere ; 4(2)2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842272

RESUMO

Many fungal species, including pathogens, undergo a morphogenetic response called filamentous growth, where cells differentiate into a specialized cell type to promote nutrient foraging and surface colonization. Despite the fact that filamentous growth is required for virulence in some plant and animal pathogens, certain aspects of this behavior remain poorly understood. By examining filamentous growth in the budding yeast Saccharomyces cerevisiae and the opportunistic pathogen Candida albicans, we identify responses where cells undergo filamentous growth in groups of cells or aggregates. In S. cerevisiae, aggregate invasive growth was regulated by signaling pathways that control normal filamentous growth. These pathways promoted aggregation in part by fostering aspects of microbial cooperation. For example, aggregate invasive growth required cellular contacts mediated by the flocculin Flo11p, which was produced at higher levels in aggregates than cells undergoing regular invasive growth. Aggregate invasive growth was also stimulated by secreted enzymes, like invertase, which produce metabolites that are shared among cells. Aggregate invasive growth was also induced by alcohols that promote density-dependent filamentous growth in yeast. Aggregate invasive growth also required highly polarized cell morphologies, which may affect the packing or organization of cells. A directed selection experiment for aggregating phenotypes uncovered roles for the fMAPK and RAS pathways, which indicates that these pathways play a general role in regulating aggregate-based responses in yeast. Our study extends the range of responses controlled by filamentation regulatory pathways and has implications in understanding aspects of fungal biology that may be relevant to fungal pathogenesis.IMPORTANCE Filamentous growth is a fungal morphogenetic response that is critical for virulence in some fungal species. Many aspects of filamentous growth remain poorly understood. We have identified an aspect of filamentous growth in the budding yeast Saccharomyces cerevisiae and the human pathogen Candida albicans where cells behave collectively to invade surfaces in aggregates. These responses may reflect an extension of normal filamentous growth, as they share the same signaling pathways and effector processes. Aggregate responses may involve cooperation among individual cells, because aggregation was stimulated by cell adhesion molecules, secreted enzymes, and diffusible molecules that promote quorum sensing. Our study may provide insights into the genetic basis of collective cellular responses in fungi. The study may have ramifications in fungal pathogenesis, in situations where collective responses occur to promote virulence.


Assuntos
Candida albicans/crescimento & desenvolvimento , Saccharomyces cerevisiae/crescimento & desenvolvimento , Álcoois/metabolismo , Candida albicans/genética , Polaridade Celular , Regulação Fúngica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Saccharomyces cerevisiae/genética , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo
15.
Genetics ; 212(3): 667-690, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31053593

RESUMO

Signaling pathways can regulate biological responses by the transcriptional regulation of target genes. In yeast, multiple signaling pathways control filamentous growth, a morphogenetic response that occurs in many species including fungal pathogens. Here, we examine the role of signaling pathways that control filamentous growth in regulating adhesion-dependent surface responses, including mat formation and colony patterning. Expression profiling and mutant phenotype analysis showed that the major pathways that regulate filamentous growth [filamentous growth MAPK (fMAPK), RAS, retrograde (RTG), RIM101, RPD3, ELP, SNF1, and PHO85] also regulated mat formation and colony patterning. The chromatin remodeling complex, SAGA, also regulated these responses. We also show that the RAS and RTG pathways coregulated a common set of target genes, and that SAGA regulated target genes known to be controlled by the fMAPK, RAS, and RTG pathways. Analysis of surface growth-specific targets identified genes that respond to low oxygen, high temperature, and desiccation stresses. We also explore the question of why cells make adhesive contacts in colonies. Cell adhesion contacts mediated by the coregulated target and adhesion molecule, Flo11p, deterred entry into colonies by macroscopic predators and impacted colony temperature regulation. The identification of new regulators (e.g., SAGA), and targets of surface growth in yeast may provide insights into fungal pathogenesis in settings where surface growth and adhesion contributes to virulence.


Assuntos
Biofilmes , Adesão Celular , Regulação Fúngica da Expressão Gênica , Hifas/genética , Saccharomyces cerevisiae/genética , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Hifas/crescimento & desenvolvimento , Sistema de Sinalização das MAP Quinases , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/patogenicidade , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/genética , Transativadores/metabolismo , Virulência/genética , Proteínas ras/genética , Proteínas ras/metabolismo
16.
J Fungi (Basel) ; 4(3)2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096860

RESUMO

The fungal cell wall is an extracellular organelle that provides structure and protection to cells. The cell wall also influences the interactions of cells with each other and surfaces. The cell wall can be reorganized in response to changing environmental conditions and different types of stress. Signaling pathways control the remodeling of the cell wall through target proteins that are in many cases not well defined. The Mitogen Activated Protein Kinase pathway that controls filamentous growth in yeast (fMAPK) was required for normal growth in media containing the cell wall perturbing agent Calcofluor White (CFW). A mass spectrometry (MASS-SPEC) approach and analysis of expression profiling data identified cell wall proteins and modifying enzymes whose levels were influenced by the fMAPK pathway. These include Flo11p, Flo10p, Tip1p, Pry2p and the mannosyltransferase, Och1p. Cells lacking Flo11p or Och1p were sensitive to CFW. The identification of cell wall proteins controlled by a MAPK pathway may provide insights into how signaling pathways regulate the cell wall.

17.
Biochem Mol Biol Educ ; 46(6): 592-601, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30311729

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) are a revolutionary tool based on a bacterial acquired immune response system. CRISPR has gained widespread use for gene editing in a variety of organisms and is an increasingly valuable tool for basic genetic research, with far-reaching implications for medicine, agriculture, and industry. This lab is based on the premise that upper division undergraduate students enrolled in a Life Sciences curriculum must become familiar with cutting edge advances in biotechnology that have significant impact on society. Toward this goal, we developed a new hands-on laboratory exercise incorporating the use of CRISPR-Cas9 and homology directed repair (HDR) to edit two well-characterized genes in the budding yeast, Saccharomyces cerevisiae. The two genes edited in this exercise, Adenine2 (ADE2) and Sterile12 (STE12) affect metabolic and developmental processes, respectively. Editing the premature stop codons in these genes results in clearly identifiable phenotypes that can be assessed by students in a standard laboratory course setting. Making use of this basic eukaryotic model organism facilitates a laboratory exercise that is inexpensive, simple to organize, set up, and present to students. This exercise enables undergraduate students to initiate and follow-up on all stages of the CRISPR gene editing process, from identification of guide RNAs, amplification of an appropriate HDR fragment, and analysis of mutant phenotypes. The organization of this protocol also allows for easy modification, providing additional options for editing any expressed genes within the yeast genome to produce new mutations, or recovery of existing mutants to wild type. © 2018 International Union of Biochemistry and Molecular Biology, 46(6):592-601, 2018.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes , Genética/educação , Laboratórios , Saccharomyces cerevisiae/genética , Universidades , Currículo , Estudantes
18.
Mol Cell Biol ; 35(8): 1414-32, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25666509

RESUMO

Signaling mucins are evolutionarily conserved regulators of signal transduction pathways. The signaling mucin Msb2p regulates the Cdc42p-dependent mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in yeast. The cleavage and release of the glycosylated inhibitory domain of Msb2p is required for MAPK activation. We show here that proteolytic processing of Msb2p was induced by underglycosylation of its extracellular domain. Cleavage of underglycosylated Msb2p required the unfolded protein response (UPR), a quality control (QC) pathway that operates in the endoplasmic reticulum (ER). The UPR regulator Ire1p, which detects misfolded/underglycosylated proteins in the ER, controlled Msb2p cleavage by regulating transcriptional induction of Yps1p, the major protease that processes Msb2p. Accordingly, the UPR was required for differentiation to the filamentous cell type. Cleavage of Msb2p occurred in conditional trafficking mutants that trap secretory cargo in the endomembrane system. Processed Msb2p was delivered to the plasma membrane, and its turnover by the ubiquitin ligase Rsp5p and ESCRT attenuated the filamentous-growth pathway. We speculate that the QC pathways broadly regulate signaling glycoproteins and their cognate pathways by recognizing altered glycosylation patterns that can occur in response to extrinsic cues.


Assuntos
Sistema de Sinalização das MAP Quinases , Mucinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Resposta a Proteínas não Dobradas , Glicosilação , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteólise , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Mol Cell Biol ; 35(2): 417-36, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25384973

RESUMO

The ubiquitous Rho (Ras homology) GTPase Cdc42p can function in different settings to regulate cell polarity and cellular signaling. How Cdc42p and other proteins are directed to function in a particular context remains unclear. We show that the Cdc42p-interacting protein Bem4p regulates the mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in Saccharomyces cerevisiae. Bem4p controlled the filamentous-growth pathway but not other MAPK pathways (mating or high-osmolarity glycerol response [HOG]) that also require Cdc42p and other shared components. Bem4p associated with the plasma membrane (PM) protein, Sho1p, to regulate MAPK activity and cell polarization under nutrient-limiting conditions that favor filamentous growth. Bem4p also interacted with the major activator of Cdc42p, the guanine nucleotide exchange factor (GEF) Cdc24p, which we show also regulates the filamentous-growth pathway. Bem4p interacted with the pleckstrin homology (PH) domain of Cdc24p, which functions in an autoinhibitory capacity, and was required, along with other pathway regulators, to maintain Cdc24p at polarized sites during filamentous growth. Bem4p also interacted with the MAPK kinase kinase (MAPKKK) Ste11p. Thus, Bem4p is a new regulator of the filamentous-growth MAPK pathway and binds to general proteins, like Cdc42p and Ste11p, to promote a pathway-specific response.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo , Animais , Polaridade Celular/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-24513021

RESUMO

Microtubules (MTs) are essential components of the cytoskeleton that play critical roles in neurodevelopment and adaptive central nervous system functioning. MTs are essential to growth cone advance and ultrastructural events integral to synaptic plasticity; these functions figure significantly into current pathophysiologic conceptualizations of schizophrenia. To date, no study has directly investigated MT dynamics in humans with schizophrenia. We therefore compared the stability of MTs in olfactory neuroepithelial (OE) cells between schizophrenia cases and matched nonpsychiatric comparison subjects. For this purpose, we applied nocodazole (Nz) to cultured OE cells obtained from tissue biopsies from seven living schizophrenia patients and seven matched comparison subjects; all schizophrenia cases were on antipsychotic medications. Nz allows MT depolymerization to be followed but prevents repolymerization, so that in living cells treated for varying time intervals, the MTs that are stable for a given treatment interval remain. Our readout of MT stability was the time at which fewer than 10 MTs per cell could be distinguished by anti-ß-tubulin immunofluorescence. The percentage of cells with ≥10 intact MTs at specified intervals following Nz treatment was estimated by systematic uniform random sampling with Visiopharm software. These analyses showed that the mean percentages of OE cells with intact MTs were significantly greater for schizophrenia cases than for the matched comparison subjects at 10, 15, and 30min following Nz treatment indicating increased MT stability in OE cells from schizophrenia patients (p=0.0007 at 10min; p=0.0008 at 15min; p=0.036 at 30min). In conclusion, we have demonstrated increased MT stability in nearly all cultures of OE cells from individuals with schizophrenia, who received several antipsychotic treatments, versus comparison subjects matched for age and sex. While we cannot rule out a possible confounding effect of antipsychotic medications, these findings may reflect analogous neurobiological events in at least a subset of immature neurons or other cell types during gestation, or newly generated cells destined for the olfactory bulb or hippocampus, suggesting a mechanism that underlies findings of postmortem and neuroimaging investigations of schizophrenia. Future studies aimed at replicating these findings, including samples of medication-naïve subjects with schizophrenia, and reconciling the results with other studies, will be necessary. Although the observed abnormalities may suggest one of a number of putative pathophysiologic anomalies in schizophrenia, this work may ultimately have implications for an improved understanding of pathogenic processes related to this disorder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA