RESUMO
Most patients with lung squamous cell carcinoma (LSCC) undergo chemotherapy, radiotherapy, and adjuvant immunotherapy for locally advanced disease. The efficacy of these treatments is still limited due to dose-limiting toxicity or locoregional recurrence. New combination approaches and targets such as actionable oncogenic drivers are needed to advance treatment options for LSCC patients. Moreover, other options for chemotherapy-ineligible patients are also limited. As such there is a critical need for the development of selective and potent chemoradiosensitizers for locally advanced LSCC. Here, we investigated inhibiting TRAF2 and NCK-interacting protein kinase (TNIK), which is amplified in 40% of LSCC patients, as a strategy to sensitize LSCC tumors to chemo- and radiotherapy. Employing a range of human LSCC cell lines and the TNIK inhibitor NCB-0846, we investigated the potential of TNIK as a chemo- and radiosensitizing target with in vitro and in vivo preclinical models. The combination of NCB-0846 with cisplatin or etoposide was at best additive. Interestingly, pre-treating LSCC cells with NCB-0846 prior to ionizing radiation (IR) potentiated the cytotoxicity of IR in a TNIK-specific fashion. Characterization of the radiosensitization mechanism suggested that TNIK inhibition may impair the DNA damage response and promote mitotic catastrophe in irradiated cells. In a subcutaneous xenograft in vivo model, pretreatment with NCB-0846 significantly enhanced the efficacy of IR and caused elevated necrosis in TNIKhigh LK2 tumors but not TNIKlow KNS62 tumors. Overall, these results indicate that TNIK inhibition may be a promising strategy to increase the efficacy of radiotherapy in LSCC patients with high TNIK expression.
RESUMO
Skeletal muscle is more resilient to ischemia-reperfusion injury than other organs. Tissue specific post-translational modifications of cytochrome c (Cytc) are involved in ischemia-reperfusion injury by regulating mitochondrial respiration and apoptosis. Here, we describe an acetylation site of Cytc, lysine 39 (K39), which was mapped in ischemic porcine skeletal muscle and removed by sirtuin5 in vitro. Using purified protein and cellular double knockout models, we show that K39 acetylation and acetylmimetic K39Q replacement increases cytochrome c oxidase (COX) activity and ROS scavenging while inhibiting apoptosis via decreased binding to Apaf-1, caspase cleavage and activity, and cardiolipin peroxidase activity. These results are discussed with X-ray crystallography structures of K39 acetylated (1.50 Å) and acetylmimetic K39Q Cytc (1.36 Å) and NMR dynamics. We propose that K39 acetylation is an adaptive response that controls electron transport chain flux, allowing skeletal muscle to meet heightened energy demand while simultaneously providing the tissue with robust resilience to ischemia-reperfusion injury.
Assuntos
Lisina , Traumatismo por Reperfusão , Animais , Suínos , Lisina/metabolismo , Citocromos c/metabolismo , Fosforilação , Acetilação , Processamento de Proteína Pós-Traducional , Apoptose , Respiração Celular/fisiologia , Traumatismo por Reperfusão/metabolismo , Músculo Esquelético/metabolismoRESUMO
Extra copies of centrosomes are frequently observed in cancer cells. To survive and proliferate, cancer cells have developed strategies to cluster extra-centrosomes to form bipolar mitotic spindles. The aim of this study was to investigate whether centrosome clustering (CC) inhibition (CCi) would preferentially radiosensitize non-small cell lung cancer (NSCLC). Griseofulvin (GF; FDA-approved treatment) inhibits CC, and combined with radiation treatment (RT), resulted in a significant increase in the number of NSCLC cells with multipolar spindles, and decreased cell viability and colony formation ability in vitro. In vivo, GF treatment was well tolerated by mice, and the combined therapy of GF and radiation treatment resulted in a significant tumor growth delay. Both GF and radiation treatment also induced the generation of micronuclei (MN) in vitro and in vivo and activated cyclic GMP-AMP synthase (cGAS) in NSCLC cells. A significant increase in downstream cGAS-STING pathway activation was seen after combination treatment in A549 radioresistant cells that was dependent on cGAS. In conclusion, GF increased radiation treatment efficacy in lung cancer preclinical models in vitro and in vivo. This effect may be associated with the generation of MN and the activation of cGAS. These data suggest that the combination therapy of CCi, radiation treatment, and immunotherapy could be a promising strategy to treat NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Griseofulvina/farmacologia , Griseofulvina/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/patologia , Centrossomo , NucleotidiltransferasesRESUMO
Sperm-associated antigen 6 (SPAG6) is the mammalian orthologue of Chlamydomonas PF16, an axonemal central pair protein involved in flagellar motility. In mice, two Spag6 genes have been identified. The ancestral gene, on mouse chromosome 2, is named Spag6. A related gene originally called Spag6, localized on mouse chromosome 16, evolved from the ancient Spag6 gene. It has been renamed Spag6-like (Spag6l). Spag6 encodes a 1.6 kb transcript consisting of 11 exons, while Spag6l encodes a 2.4 kb transcript which contains an additional non-coding exon in the 3'-end as well as the 11 exons found in Spag6. The two Spag6 genes share high similarities in their nucleotide and amino acid sequences. Unlike Spag6l mRNA, which is widely expressed, Spag6 mRNA expression is limited to a smaller number of tissues, including the testis and brain. In transfected mammalian cells, SPAG6/GFP is localized on microtubules, a similar localization as SPAG6L. A global Spag6l knockout mouse model was generated previously. In addition to a role in modulating the ciliary beat, SPAG6L has many unexpected functions, including roles in the regulation of ciliogenesis/spermatogenesis, hearing, and the immunological synapse, among others. To investigate the role of the ancient Spag6 gene, we phenotyped global Spag6 knockout mice. All homozygous mutant mice were grossly normal, and fertility was not affected in both males and females. The homozygous males had normal sperm parameters, including sperm number, motility, and morphology. Examination of testis histology revealed normal spermatogenesis. Testicular protein expression levels of selected SPAG6L binding partners, including SPAG16L, were not changed in the Spag6 knockout mice, even though the SPAG16L level was significantly reduced in the Spag6l knockout mice. Structural analysis of the two SPAG6 proteins shows that both adopt very similar folds, with differences in a few amino acids, many of which are solvent-exposed. These differences endow the two proteins with different functional characteristics, even though both have eight armadillo repeats that mediate protein-protein interaction. Our studies suggest that SPAG6 and SPAG6L have different functions in vivo, with the evolved SPAG6L protein being more important. Since the two proteins have some overlapping binding partners, SPAG6 could have functions that are yet to be identified.
Assuntos
Proteínas dos Microtúbulos , Testículo , Animais , Feminino , Masculino , Mamíferos/metabolismo , Camundongos , Camundongos Knockout , Proteínas dos Microtúbulos/genética , RNA Mensageiro/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismoRESUMO
Prostate cancer is the second leading cause of cancer-related death in men. Two classic cancer hallmarks are a metabolic switch from oxidative phosphorylation (OxPhos) to glycolysis, known as the Warburg effect, and resistance to cell death. Cytochrome c (Cytc) is at the intersection of both pathways, as it is essential for electron transport in mitochondrial respiration and a trigger of intrinsic apoptosis when released from the mitochondria. However, its functional role in cancer has never been studied. Our data show that Cytc is acetylated on lysine 53 in both androgen hormone-resistant and -sensitive human prostate cancer xenografts. To characterize the functional effects of K53 modification in vitro, K53 was mutated to acetylmimetic glutamine (K53Q), and to arginine (K53R) and isoleucine (K53I) as controls. Cytochrome c oxidase (COX) activity analyzed with purified Cytc variants showed reduced oxygen consumption with acetylmimetic Cytc compared to the non-acetylated Cytc (WT), supporting the Warburg effect. In contrast to WT, K53Q Cytc had significantly lower caspase-3 activity, suggesting that modification of Cytc K53 helps cancer cells evade apoptosis. Cardiolipin peroxidase activity, which is another proapoptotic function of the protein, was lower in acetylmimetic Cytc. Acetylmimetic Cytc also had a higher capacity to scavenge reactive oxygen species (ROS), another pro-survival feature. We discuss our experimental results in light of structural features of K53Q Cytc, which we crystallized at a resolution of 1.31 Å, together with molecular dynamics simulations. In conclusion, we propose that K53 acetylation of Cytc affects two hallmarks of cancer by regulating respiration and apoptosis in prostate cancer xenografts.