Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Haematol ; 188(5): 707-722, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31610612

RESUMO

Significant phenotypic heterogeneity exists in patients with all subtypes of myeloproliferative neoplasms (MPN), including essential thrombocythaemia (ET). Single-cell RNA sequencing (scRNA-Seq) holds the promise of unravelling the biology of MPN at an unprecedented level of resolution. Herein we employed this approach to dissect the transcriptomes in the CD34+ cells from the peripheral blood of seven previously untreated ET patients and one healthy adult. The mutational profiles in these patients were as follows: JAK2 V617F in two, CALR in three (one type I and two type II) and triple-negative (TN) in two. Our results reveal substantial heterogeneity within this enrolled cohort of patients. Activation of JAK/STAT signalling was recognized in discrepant progenitor lineages among different samples. Significantly disparate molecular profiling was identified in the comparison between ET patients and the control, between patients with different driver mutations (JAK2 V617F and CALR exon 9 indel), and even between patients harbouring the same driver. Intra-individual clonal diversity was also found in the CD34+ progenitor population of a patient, possibly indicating the presence of multiple clones in this case. Estimation of subpopulation size based on cellular immunophenotyping suggested differentiation bias in all analysed samples. Furthermore, combining the transcriptomic information with data from targeted sequencing enabled us to unravel key somatic mutations that are molecularly relevant. To conclude, we demonstrated that scRNA-Seq extended our knowledge of clonal diversity and inter-individual heterogeneity in patients with ET. The obtained information could potentially leapfrog our efforts in the elucidation of the pathogenesis of the disease.


Assuntos
Calreticulina , Janus Quinase 2 , RNA-Seq , Análise de Célula Única , Trombocitemia Essencial , Transcriptoma , Adulto , Substituição de Aminoácidos , Calreticulina/genética , Calreticulina/metabolismo , Feminino , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Trombocitemia Essencial/sangue , Trombocitemia Essencial/genética
3.
iScience ; 25(8): 104710, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35874097

RESUMO

One of the top priorities in any laboratory is archiving experimental data in the most secure, efficient, and errorless way. It is especially important to those in chemical and biological research, for it is more likely to damage experiment records. In addition, the transmission of experiment results from paper to electronic devices is time-consuming and redundant. Therefore, we introduce an open-source no-code electronic laboratory notebook, Elegancy, a cloud-based/standalone web service distributed as a Docker image. Elegancy fits all laboratories but is specially equipped with several features benefitting biochemical laboratories. It can be accessed via various web browsers, allowing researchers to upload photos or audio recordings directly from their mobile devices. Elegancy also contains a meeting arrangement module, audit/revision control, and laboratory supply management system. We believe Elegancy could help the scientific research community gather evidence, share information, reorganize knowledge, and digitize laboratory works with greater ease and security.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA