Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Contam Hydrol ; 267: 104427, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39265307

RESUMO

Mine waste rock poses significant environmental challenges. Evaluating management and reclamation options is particularly complex because of the wide particle size distribution, the non-uniform distribution of acid-generating and buffering minerals, and the variable contribution of the different particle size fractions to acid mine drainage (AMD) generation. Reactive transport simulations can be useful to complement and overcome the limitations of laboratory and field experiments. However, predicting field-scale and long-term geochemical behavior of waste rock requires a better understanding of numerical parameters scale-up. In this study, three waste rocks, with different mineral composition and particle size distribution, were separated into different fractions and tested in the laboratory. Kinetic tests were used to calibrate numerical models and adjust minerals' effective kinetic rate constants to match measured pH and metal concentrations. Calibrated reactive transport simulations were able to reproduce accurately the effect of particle size on pH and sulfate and calcium production rates. Experimental and numerical results confirmed that waste rock oxidation and neutralization rates tended to decrease with increasing particle sizes. Several models were tested and the weighted geometric mean of the effective kinetic rate constants as a function of the proportion of each fraction provided the most accurate estimation of the whole specimen kinetic rate constants. A novel approach to predict waste rock geochemical behavior from a single laboratory test also showed promising results. Overall, these results should contribute to improving the extrapolation of laboratory kinetic test results to field predictions.

2.
ACS Omega ; 8(17): 15543-15552, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37151485

RESUMO

Hydrogen separation is an important step for the utilization of hydrogen energy. Metallic alloys, such as vanadium-nickel, are potential hydrogen separation materials. Due to the strong propensity of vanadium to form oxides and hydrides, vanadium alloy has a lower hydrogen permeability, and it is difficult to maintain the permeability over time. Therefore, special preparation processes such as Pd coating have been suggested for hydrogen separation vanadium-based membranes. However, aside from the prohibitive price of palladium, the interdiffusion of palladium and vanadium makes the coated membrane inviable to be used at a high temperature. Thermal treatment with inert gas was investigated in this study to assess the applicability of the vanadium alloy without palladium coating for hydrogen separation and clarify the mechanism behind the thermal treatment. Argon is inert with vanadium and displayed permeability recovery after 43 h thermal treatment, but the permeability declined under certain conditions. In contrast, nitrogen is known to interact with vanadium and the hydrogen permeability was maintained at a level lower than the test with argon. Given that nitrogen can compete with hydrogen for the active sites on vanadium, nitrogen might hinder hydrogen adsorption and hydride formation, whereas argon reduced the partial pressure of hydrogen during the thermal treatment, enhancing the driving force of hydrogen desorption. In the X-ray diffraction spectrum, vanadium hydrides and oxides were confirmed after hydrogen permeation and thermal treatment. In the X-ray photoelectron spectroscopy data, oxygen was a dominant element due to vanadium oxides and adsorbed nitrogen was also observed. According to binding energy shifts of nitrogen, nitrogen used for thermal treatment might substitute or compete for active sites with adsorbed nitrogen and hydrogen, existing in vanadium lattice. Although thermal treatment can be used to recover hydrogen permeability, the alloy cannot be recovered as hydrogen-free. However, results demonstrate the potential of thermal treatment to complement an uncoated vanadium alloy for a hydrogen separation membrane.

3.
Chemosphere ; 317: 137865, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642144

RESUMO

Recycling lithium-ion batteries has recently become a major concern. Ammonia leaching is commonly employed in such battery recycling methods since it has various advantages such as low toxicity and excellent selectivity toward precious metals. In this study, an electrochemical system with intercalation-type electrodes was used to investigate the selective recovery of lithium and ammonium from ammonia battery leachate. Using an activated carbon electrode as a counter electrode, the selectivity of lithium from the lithium manganese oxide (LMO) electrode and the selectivity of ammonium from the nickel hexacyanoferrate (NiHCF) electrode were examined within the system. The LMO//NiHCF system was next evaluated for lithium and ammonium recovery using a synthetic solution as well as real ammonia battery leachate. When compared to previous ammonium recovery methods, the results revealed good selectivity of lithium and ammonium from each LMO and NiHCF electrode with relatively low energy consumption for ammonium recovery (2.43 Wh g-N-1). The average recovery capacity of lithium was 1.39 mmol g-1 with a purity of up to 96.8% and the recovery capacity of ammonium was 1.09 mmol g-1 with 97.8% purity from the pre-treated leachate. This electrochemical method together with ammonia leaching can be a promising method for selective resource recovery from spent lithium-ion batteries.


Assuntos
Compostos de Amônio , Lítio , Amônia , Níquel , Fontes de Energia Elétrica , Eletrodos , Reciclagem/métodos , Íons
4.
Environ Sci Technol ; 46(8): 4532-8, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22424549

RESUMO

Neutron reflectometry (NR) was employed to study the interaction of nanosized silica particles with a flat silica surface in aqueous solutions. Unlike other experimental tools that are used to study surface interactions, NR can provide information on the particle density profile in the solution near the interface. Two types of silica particles (25 and 100 nm) were suspended in aqueous solutions of varying ionic strength. Theoretical calculations of the surface interaction potential between a particle and a flat silica surface using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory were compared to the experimental data. The theory predicts that the potential energy is highly dependent on the ionic strength. In high ionic strength solutions, NR reveals a high concentration of particles near the flat silica surface. Under the same conditions, theoretical calculations show an attractive force between a particle and a flat surface. For low ionic strength solutions, the particle concentration near the surface obtained from NR is the same as the bulk concentration, while depletion of particles near the surface is expected because of the repulsion predicted by the DLVO theory.


Assuntos
Nanopartículas/química , Dióxido de Silício/química , Microscopia Eletrônica de Varredura , Nanopartículas/ultraestrutura , Nêutrons , Concentração Osmolar , Tamanho da Partícula , Propriedades de Superfície
5.
Chemosphere ; 307(Pt 1): 135613, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35810870

RESUMO

In this study, the electrosorption selectivity of porous activated carbon (AC) and nickel hexacyanoferrate (NiHCF), which represent two working mechanisms of capacitive electrosorption and redox intercalation, was investigated to separate cations in capacitive deionization (CDI). The cyclic voltammetry diagrams of AC showed the rectangular shape of double-layer charging, while that of NiHCF showed separated peaks associated with redox reactions. The specific capacitance of NiHCF was 143.6 F/g in 1 M NaCl, which was almost two times higher than that of AC. Cation selectivity experiments were conducted in single-pass CDI for a multi-cation solution. The electrosorption preference of the AC cathode was determined by a counterbalance between the ionic charge and hydrated size, reflecting the selectivity coefficient of different cations over Na+ in the range of 0.86-2.63. For the NiHCF cathode, the cation selectivity was mainly dominated by the hydrated radius and redox activity. Notably, high selectivities of K+/Na+ ≈ 3.57, Na+/Ca2+ ≈ 9.97, and Na+/Mg2+ ≈ 18.92 were obtained. A significant improvement in the electrosorption capacity and monovalent ion selectivity can be achieved by utilizing the NiHCF electrode. The study demonstrates the fundamental aspects and promising opportunities of CDI in regard to ion selectivity.

6.
Environ Sci Technol ; 45(24): 10598-604, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22054355

RESUMO

We recently reported that C(60) aminofullerenes immobilized on silica support (aminoC(60)/silica) efficiently produce singlet oxygen ((1)O(2)) and inactivate virus and bacteria under visible light irradiation. (1) We herein evaluate this new photocatalyst for oxidative degradation of 11 emerging organic contaminants, including pharmaceuticals such as acetaminophen, carbamazepine, cimetidine, propranolol, ranitidine, sulfisoxazole, and trimethoprim, and endocrine disruptors such as bisphenol A and pentachlorophenol. Tetrakis aminoC(60)/silica degraded pharmaceuticals under visible light irradiation faster than common semiconductor photocatalysts such as platinized WO(3) and carbon-doped TiO(2). Furthermore, aminoC(60)/silica exhibited high target-specificity without significant interference by natural organic matter. AminoC(60)/silica was more efficient than unsupported (water-suspended) C(60) aminofullerene. This was attributed to kinetically enhanced (1)O(2) production after immobilization, which reduces agglomeration of the photocatalyst, and to adsorption of pharmaceuticals onto the silica support, which increases exposure to (1)O(2) near photocatalytic sites. Removal efficiency increased with pH for contaminants with a phenolic moiety, such as bisphenol A and acetaminophen, because the electron-rich phenolates that form at alkaline pH are more vulnerable to singlet oxygenation.


Assuntos
Fulerenos/química , Dióxido de Silício/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Disruptores Endócrinos/análise , Disruptores Endócrinos/química , Recuperação e Remediação Ambiental/métodos , Luz , Oxirredução , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/química , Processos Fotoquímicos , Poluentes Químicos da Água/análise
7.
Environ Sci Technol ; 44(16): 6209-14, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20666490

RESUMO

Electrostatic force is investigated as one of the components of the adhesion force between Bacillus thuringiensis (Bt) spores and planar surfaces. The surface potentials of a Bt spore and a mica surface are experimentally obtained using a combined atomic force microscopy (AFM)-scanning surface potential microscopy technique. On the basis of experimental information, the surface charge density of the spores is estimated at 0.03 microC/cm(2) at 20% relative humidity and decreases with increasing humidity. The Coulombic force is introduced for the spore-mica system (both charged, nonconductive surfaces), and an electrostatic image force is introduced to the spore-gold system because gold is electrically conductive. The Coulombic force for spore-mica is repulsive because the components are similarly charged, while the image force for the spore-gold system is attractive. The magnitude of both forces decreases with increasing humidity. The electrostatic forces are added to other force components, e.g., van der Waals and capillary forces, to obtain the adhesion force for each system. The adhesion forces measured by AFM are compared to the estimated values. It is shown that the electrostatic (Coulombic and image) forces play a significant role in the adhesion force between spores and planar surfaces.


Assuntos
Bacillus thuringiensis/fisiologia , Aderência Bacteriana/fisiologia , Eletricidade Estática , Silicatos de Alumínio/farmacologia , Bacillus thuringiensis/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Ouro/farmacologia , Microscopia de Força Atômica , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/fisiologia , Propriedades de Superfície/efeitos dos fármacos
8.
Chemosphere ; 221: 75-80, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30634151

RESUMO

Shale gas produced water is a by-product from shale gas production which causes environmental issues and needs for a wastewater treatment process. Lithium is one of the valuable metals that exists in the shale gas produced water, and it can be recovered during the water treatment process. However, the concentration of organic carbon in the produced water is significantly high, and these organic compounds may affect the lithium recovery efficiency. Therefore, the lithium adsorption from shale gas produced water containing organic compounds was carried out in this study to observe the influence of organic compounds on lithium adsorption using H2TiO3 adsorbent. The equilibrium time from the kinetic study and the maximum adsorption capacity calculated from the Langmuir isotherm equation decreased with the addition of organic compounds to the produced water. Overall, lithium was selectively recovered from the pH buffered shale gas produced water with or without organic compounds. However, the results indicate the addition of organic compounds, especially the smaller-molecular-weight organic compound, to the produced water inhibits the lithium adsorption significantly.


Assuntos
Lítio/química , Gás Natural , Titânio , Águas Residuárias/química , Água/química , Adsorção , Lítio/isolamento & purificação , Compostos Orgânicos , Titânio/química , Purificação da Água
9.
Chemosphere ; 167: 91-97, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27710847

RESUMO

Phosphorus removal has been studied for decades to reduce the environmental impact of phosphorus in natural waterbodies. Slag has been applied for the phosphorus removal by several mechanisms. In this study, sodium hydroxide coating was applied on the slag surface to enhance the efficiency of precipitation-coagulation process. In the batch test, it was found that the capacity of the slag to maintain high pH decreases with increasing its exposure time to the aqueous solution. In the column test, the coarse-grained coated slag showed higher phosphorus removal efficiency than the fine-grained uncoated slag. The coated slag maintained pH higher than uncoated slag and, accordingly, the removal efficiency of phosphorus was higher. Especially, when pH was less than 8, the removal efficiency decreased significantly. However, coated slag provided an excess amount of aluminum and sodium. Thus, a return process to reuse aluminum and sodium as a coagulant was introduced. The return process yields longer lifespan of slag with higher phosphorus removal and lower concentration of cations in the effluent. With the return process, the phosphorus removal efficiency was kept higher than 60% until 150 bed volumes; meanwhile, the efficiency without return process became lower than 60% at 25 bed volumes.


Assuntos
Fósforo/química , Hidróxido de Sódio/química , Aço/química , Poluentes Químicos da Água/química , Precipitação Química , Floculação , Resíduos Industriais , Purificação da Água/métodos
10.
Chemosphere ; 144: 2264-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26598995

RESUMO

Phosphorus is one of the elements that have a significant impact on such environmental problems as eutrophication or algal bloom. Phosphorus compounds in water can be hydrolyzed to orthophosphate that is the only form of phosphorus that algae can assimilate. In this study, phosphorus removal in terms of orthophosphate and total phosphorus from wastewater was studied using alum or ferric ions as coagulants. It was observed that alum shows higher phosphorus removal efficiency than ferric ions in the same mole ratio concentrations. The proportion of orthophosphate among total phosphorus did not change significantly during coagulation process when the coagulant concentration is low. However, the proportion becomes gradually decreased as the coagulant concentration increases. Not only the electrolyte concentration difference in solution, but the characteristics of orthophosphate and polyphosphate such as reactivity and ionic size might also cause the differences in the removal rate. Orthophosphate that has greater reactivity than other phosphorus species would be involved in chemical reactions dominantly when large amounts of coagulants are applied. However, the effect of reactivity was diminished due to the large ionic size of polyphosphate and low concentration of electrolyte in low coagulant concentration during the coagulation process.


Assuntos
Fósforo/isolamento & purificação , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Compostos de Alúmen/química , Eutrofização , Floculação , Hidrólise , Modelos Teóricos , Fosfatos/química , Fosfatos/isolamento & purificação , Fósforo/química , Poluentes Químicos da Água/química
11.
Environ Sci Technol ; 44(1): 290-6, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19928904

RESUMO

Adhesion of spores of Bacillus thuringiensis (Bt) and spherical silica particles on surfaces was experimentally and theoretically investigated in this study. Topography analysis via atomic force microscopy (AFM) and electron microscopy indicates that Bt spores are rod shaped, approximately 1.3 mum in length and approximately 0.8 mum in diameter. The adhesion force of Bt spores and silica particles on gold-coated glass was measured at various relative humidity (RH) levels by AFM. It was expected that the adhesion force would vary with RH because the individual force components contributing to the adhesion force depend on RH. The adhesion force between a particle and a planar surface in atmospheric environments was modeled as the contribution of three major force components: capillary, van der Waals, and electrostatic interaction forces. Adhesion force measurements for Bt spore (silica particle) and the gold surface system were comparable with calculations. Modeling results show that there is a critical RH value, which depends on the hydrophobicity of the materials involved, below which the water meniscus does not form and the contribution of the capillary force is zero. As RH increases, the van der Waals force decreases while the capillary force increases to a maximum value.


Assuntos
Bacillus thuringiensis/fisiologia , Esporos Bacterianos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão e Varredura , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA